二氧化碳和硝酸盐的协同偶联在cu掺杂CeO2纳米棒上高效电合成尿素

IF 4.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Yifan Kong, Liu Deng, You-Nian Liu
{"title":"二氧化碳和硝酸盐的协同偶联在cu掺杂CeO2纳米棒上高效电合成尿素","authors":"Yifan Kong,&nbsp;Liu Deng,&nbsp;You-Nian Liu","doi":"10.1007/s11705-025-2615-5","DOIUrl":null,"url":null,"abstract":"<div><p>The electrocatalytic co-reduction of carbon dioxide (CO<sub>2</sub>) and nitrate (NO<sub>3</sub><sup>−</sup>) to urea represents a sustainable alternative to energy-intensive industrial synthesis processes. Herein, we report copper-doped cerium oxide nanorods (Cu-CeO<sub>2</sub>) as an efficient catalyst for this reaction, achieving a urea yield of 358.5 mg·h<sup>−1</sup>·g<sup>−1</sup> at −0.7 V vs. reversible hydrogen electrode with 21.1% Faradaic efficiency. <i>In situ</i> Fourier transform infrared spectroscopy analysis reveals that during electrocatalytic urea synthesis, CO<sub>2</sub> activation at the catalyst surface generates carbonyl-containing intermediates (*CO), which couple with nitrogenous species (NH<sub><i>x</i></sub>) derived from NO<sub>3</sub><sup>−</sup> reduction. The key coupling reaction intermediate *NHCO was detected, and the *NHCO intermediate played a crucial role in promoting C–N bond formation. The stability of this intermediate directly facilitated the successful formation of urea. These findings elucidate the reaction pathway mediated by the Cu-CeO<sub>2</sub> catalyst, establishing a theoretical foundation for subsequent catalyst design optimization.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic coupling of carbon dioxide and nitrate for efficient electrosynthesis of urea using Cu-doped CeO2 nanorods\",\"authors\":\"Yifan Kong,&nbsp;Liu Deng,&nbsp;You-Nian Liu\",\"doi\":\"10.1007/s11705-025-2615-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electrocatalytic co-reduction of carbon dioxide (CO<sub>2</sub>) and nitrate (NO<sub>3</sub><sup>−</sup>) to urea represents a sustainable alternative to energy-intensive industrial synthesis processes. Herein, we report copper-doped cerium oxide nanorods (Cu-CeO<sub>2</sub>) as an efficient catalyst for this reaction, achieving a urea yield of 358.5 mg·h<sup>−1</sup>·g<sup>−1</sup> at −0.7 V vs. reversible hydrogen electrode with 21.1% Faradaic efficiency. <i>In situ</i> Fourier transform infrared spectroscopy analysis reveals that during electrocatalytic urea synthesis, CO<sub>2</sub> activation at the catalyst surface generates carbonyl-containing intermediates (*CO), which couple with nitrogenous species (NH<sub><i>x</i></sub>) derived from NO<sub>3</sub><sup>−</sup> reduction. The key coupling reaction intermediate *NHCO was detected, and the *NHCO intermediate played a crucial role in promoting C–N bond formation. The stability of this intermediate directly facilitated the successful formation of urea. These findings elucidate the reaction pathway mediated by the Cu-CeO<sub>2</sub> catalyst, establishing a theoretical foundation for subsequent catalyst design optimization.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 11\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2615-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2615-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳(CO2)和硝酸盐(NO3−)的电催化共还原制尿素是能源密集型工业合成过程的可持续替代方案。在此,我们报道了铜掺杂氧化铈纳米棒(Cu-CeO2)作为该反应的有效催化剂,在−0.7 V下实现了358.5 mg·h−1·g−1的尿素产率,而可逆氢电极的法拉第效率为21.1%。原位傅里叶红外光谱分析表明,在电催化尿素合成过程中,CO2在催化剂表面活化生成含羰基中间体(*CO),并与NO3−还原生成的含氮物质(NHx)偶联。检测到关键偶联反应中间体*NHCO, *NHCO中间体在促进C-N键形成中起关键作用。该中间体的稳定性直接促进了尿素的成功生成。这些发现阐明了Cu-CeO2催化剂介导的反应途径,为后续催化剂设计优化奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic coupling of carbon dioxide and nitrate for efficient electrosynthesis of urea using Cu-doped CeO2 nanorods

The electrocatalytic co-reduction of carbon dioxide (CO2) and nitrate (NO3) to urea represents a sustainable alternative to energy-intensive industrial synthesis processes. Herein, we report copper-doped cerium oxide nanorods (Cu-CeO2) as an efficient catalyst for this reaction, achieving a urea yield of 358.5 mg·h−1·g−1 at −0.7 V vs. reversible hydrogen electrode with 21.1% Faradaic efficiency. In situ Fourier transform infrared spectroscopy analysis reveals that during electrocatalytic urea synthesis, CO2 activation at the catalyst surface generates carbonyl-containing intermediates (*CO), which couple with nitrogenous species (NHx) derived from NO3 reduction. The key coupling reaction intermediate *NHCO was detected, and the *NHCO intermediate played a crucial role in promoting C–N bond formation. The stability of this intermediate directly facilitated the successful formation of urea. These findings elucidate the reaction pathway mediated by the Cu-CeO2 catalyst, establishing a theoretical foundation for subsequent catalyst design optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信