热化学储热反应堆材料失效风险降低与调控策略

IF 4.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Hui Wu, Chengcheng Wang, Hui Yang, Quanchi Dong, Tianyu Guo, Shaowu Yin, Lige Tong, Li Wang, Yulong Ding
{"title":"热化学储热反应堆材料失效风险降低与调控策略","authors":"Hui Wu,&nbsp;Chengcheng Wang,&nbsp;Hui Yang,&nbsp;Quanchi Dong,&nbsp;Tianyu Guo,&nbsp;Shaowu Yin,&nbsp;Lige Tong,&nbsp;Li Wang,&nbsp;Yulong Ding","doi":"10.1007/s11705-025-2619-1","DOIUrl":null,"url":null,"abstract":"<div><p>Medium- and low-temperature thermochemical energy storage materials are vulnerable to deliquescence, agglomeration, and structural fracturing under hyperhumid conditions, yet the fundamental origins of excess environmental moisture within reactors remain insufficiently characterized. This study systematically elucidates water vapor transport mechanisms between air and physical adsorption materials in thermochemical reactors, with emphasis on transient humidity transfer phenomena during incomplete charging and discharging cycles. Moisture saturation was defined as the key parameter for standardized humidity analysis. Results indicate that uncontrolled saturation arises from thermally driven vapor depression, in which water vapor desorbed from materials or transported by inlet air undergoes progressive condensation during downstream migration. Moisture saturation dynamics were governed by coupled effects of inlet air temperature, flow velocity, and relative humidity. Reverse charging was shown to effectively reduce maximum moisture saturation in cases where materials remained incompletely hydrated after prior discharging. Optimization of inlet air conditions through controlled transitions from low-temperature, high-velocity states to a predesigned charging protocol achieved a 45.7% reduction in maximum moisture saturation (from 1.38 to 0.75). In addition, preheating prior to discharging significantly suppressed reactor moisture saturation, thereby mitigating material failure risks.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material failure risk mitigation and regulation strategies for thermochemical heat storage reactors\",\"authors\":\"Hui Wu,&nbsp;Chengcheng Wang,&nbsp;Hui Yang,&nbsp;Quanchi Dong,&nbsp;Tianyu Guo,&nbsp;Shaowu Yin,&nbsp;Lige Tong,&nbsp;Li Wang,&nbsp;Yulong Ding\",\"doi\":\"10.1007/s11705-025-2619-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Medium- and low-temperature thermochemical energy storage materials are vulnerable to deliquescence, agglomeration, and structural fracturing under hyperhumid conditions, yet the fundamental origins of excess environmental moisture within reactors remain insufficiently characterized. This study systematically elucidates water vapor transport mechanisms between air and physical adsorption materials in thermochemical reactors, with emphasis on transient humidity transfer phenomena during incomplete charging and discharging cycles. Moisture saturation was defined as the key parameter for standardized humidity analysis. Results indicate that uncontrolled saturation arises from thermally driven vapor depression, in which water vapor desorbed from materials or transported by inlet air undergoes progressive condensation during downstream migration. Moisture saturation dynamics were governed by coupled effects of inlet air temperature, flow velocity, and relative humidity. Reverse charging was shown to effectively reduce maximum moisture saturation in cases where materials remained incompletely hydrated after prior discharging. Optimization of inlet air conditions through controlled transitions from low-temperature, high-velocity states to a predesigned charging protocol achieved a 45.7% reduction in maximum moisture saturation (from 1.38 to 0.75). In addition, preheating prior to discharging significantly suppressed reactor moisture saturation, thereby mitigating material failure risks.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 11\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2619-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2619-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

中低温热化学储能材料在超湿条件下易发生潮解、团聚和结构性破裂,但反应器中过量环境水分的根本原因尚未充分表征。本研究系统阐述了热化学反应器中空气与物理吸附材料之间的水蒸气传输机制,重点研究了不完全充放电循环过程中的瞬态湿度传递现象。湿度饱和度被定义为标准化湿度分析的关键参数。结果表明,不可控饱和是由热驱动的水汽下降引起的,其中从材料中解吸或由入口空气输送的水蒸气在下游迁移过程中经历了渐进冷凝。水分饱和动态受入口空气温度、流速和相对湿度的耦合影响。反向充电显示,有效地降低最大水分饱和度的情况下,材料仍然不完全水化后,事先放电。通过控制从低温、高速状态到预先设计的充电方案的过渡,优化进气条件,使最大水分饱和度降低了45.7%(从1.38降至0.75)。此外,在排放前预热可以显著降低反应堆的水分饱和度,从而降低材料失效的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Material failure risk mitigation and regulation strategies for thermochemical heat storage reactors

Medium- and low-temperature thermochemical energy storage materials are vulnerable to deliquescence, agglomeration, and structural fracturing under hyperhumid conditions, yet the fundamental origins of excess environmental moisture within reactors remain insufficiently characterized. This study systematically elucidates water vapor transport mechanisms between air and physical adsorption materials in thermochemical reactors, with emphasis on transient humidity transfer phenomena during incomplete charging and discharging cycles. Moisture saturation was defined as the key parameter for standardized humidity analysis. Results indicate that uncontrolled saturation arises from thermally driven vapor depression, in which water vapor desorbed from materials or transported by inlet air undergoes progressive condensation during downstream migration. Moisture saturation dynamics were governed by coupled effects of inlet air temperature, flow velocity, and relative humidity. Reverse charging was shown to effectively reduce maximum moisture saturation in cases where materials remained incompletely hydrated after prior discharging. Optimization of inlet air conditions through controlled transitions from low-temperature, high-velocity states to a predesigned charging protocol achieved a 45.7% reduction in maximum moisture saturation (from 1.38 to 0.75). In addition, preheating prior to discharging significantly suppressed reactor moisture saturation, thereby mitigating material failure risks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信