碳基核壳铁基纳米颗粒:合成与磁性

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. H. Sargsyan, A. N. Kocharian, H. T. Gyulasaryan, A. Makridis, O. Bernal, J. L. Gray, M. Angelakeris, A. S. Mukasyan, A. S. Manukyan
{"title":"碳基核壳铁基纳米颗粒:合成与磁性","authors":"A. H. Sargsyan,&nbsp;A. N. Kocharian,&nbsp;H. T. Gyulasaryan,&nbsp;A. Makridis,&nbsp;O. Bernal,&nbsp;J. L. Gray,&nbsp;M. Angelakeris,&nbsp;A. S. Mukasyan,&nbsp;A. S. Manukyan","doi":"10.1007/s10853-025-11614-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the synthesis, structural and magnetic characterization, as well as the evaluation of magnetic hyperthermia of Fe, Fe-Fe<sub>3</sub>O<sub>4</sub>, and Fe<sub>3</sub>O<sub>4</sub> nanoparticles embedded in a carbon matrix. In the first stage, Fe@C nanoparticles with a core–shell architecture were synthesized by pyrolyzing iron phthalocyanine. In the second stage, these nanoparticles were gradually oxidized to produce Fe-Fe<sub>3</sub>O<sub>4</sub> core–shell structures and Fe<sub>3</sub>O<sub>4</sub> nanoparticles, all while preserving the integrity of the carbon shell. Among the samples, Fe exhibited the highest saturation magnetization, magnetic anisotropy constant, and the most efficient heating performance in an alternating magnetic field, achieving the highest specific loss power. This superior performance is attributed to the complex double-shell particle structure, which consists of an iron core, cementite (Fe<sub>3</sub>C), and carbon shells that prevent metal oxidation and agglomeration of nanoparticles. These results highlight the potential of Fe-based core–shell nanoparticles for biomedical applications, particularly in magnetic hyperthermia therapy, due to their excellent magnetic properties and heating efficiency.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 41","pages":"19770 - 19780"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core–shell Fe-based nanoparticles in a carbon matrix: synthesis and magnetic properties\",\"authors\":\"A. H. Sargsyan,&nbsp;A. N. Kocharian,&nbsp;H. T. Gyulasaryan,&nbsp;A. Makridis,&nbsp;O. Bernal,&nbsp;J. L. Gray,&nbsp;M. Angelakeris,&nbsp;A. S. Mukasyan,&nbsp;A. S. Manukyan\",\"doi\":\"10.1007/s10853-025-11614-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents the synthesis, structural and magnetic characterization, as well as the evaluation of magnetic hyperthermia of Fe, Fe-Fe<sub>3</sub>O<sub>4</sub>, and Fe<sub>3</sub>O<sub>4</sub> nanoparticles embedded in a carbon matrix. In the first stage, Fe@C nanoparticles with a core–shell architecture were synthesized by pyrolyzing iron phthalocyanine. In the second stage, these nanoparticles were gradually oxidized to produce Fe-Fe<sub>3</sub>O<sub>4</sub> core–shell structures and Fe<sub>3</sub>O<sub>4</sub> nanoparticles, all while preserving the integrity of the carbon shell. Among the samples, Fe exhibited the highest saturation magnetization, magnetic anisotropy constant, and the most efficient heating performance in an alternating magnetic field, achieving the highest specific loss power. This superior performance is attributed to the complex double-shell particle structure, which consists of an iron core, cementite (Fe<sub>3</sub>C), and carbon shells that prevent metal oxidation and agglomeration of nanoparticles. These results highlight the potential of Fe-based core–shell nanoparticles for biomedical applications, particularly in magnetic hyperthermia therapy, due to their excellent magnetic properties and heating efficiency.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 41\",\"pages\":\"19770 - 19780\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11614-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11614-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了Fe、Fe-Fe3O4和Fe3O4纳米颗粒嵌入碳基体的合成、结构和磁性表征,以及磁热疗评价。在第一阶段,通过热解酞菁铁合成具有核壳结构的Fe@C纳米颗粒。在第二阶段,这些纳米颗粒被逐渐氧化生成Fe-Fe3O4核壳结构和Fe3O4纳米颗粒,同时保持碳壳的完整性。其中,Fe具有最高的饱和磁化强度、磁各向异性常数和交变磁场下最有效的加热性能,比损耗功率最高。这种优异的性能归功于复杂的双壳颗粒结构,它由铁核、渗碳体(Fe3C)和碳壳组成,可以防止金属氧化和纳米颗粒团聚。这些结果突出了铁基核壳纳米颗粒在生物医学应用方面的潜力,特别是在磁热疗方面,因为它们具有优异的磁性和加热效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Core–shell Fe-based nanoparticles in a carbon matrix: synthesis and magnetic properties

This study presents the synthesis, structural and magnetic characterization, as well as the evaluation of magnetic hyperthermia of Fe, Fe-Fe3O4, and Fe3O4 nanoparticles embedded in a carbon matrix. In the first stage, Fe@C nanoparticles with a core–shell architecture were synthesized by pyrolyzing iron phthalocyanine. In the second stage, these nanoparticles were gradually oxidized to produce Fe-Fe3O4 core–shell structures and Fe3O4 nanoparticles, all while preserving the integrity of the carbon shell. Among the samples, Fe exhibited the highest saturation magnetization, magnetic anisotropy constant, and the most efficient heating performance in an alternating magnetic field, achieving the highest specific loss power. This superior performance is attributed to the complex double-shell particle structure, which consists of an iron core, cementite (Fe3C), and carbon shells that prevent metal oxidation and agglomeration of nanoparticles. These results highlight the potential of Fe-based core–shell nanoparticles for biomedical applications, particularly in magnetic hyperthermia therapy, due to their excellent magnetic properties and heating efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信