Ian Mercer, Chloe Skidmore, Sebastian Calderon, Elizabeth Dickey, Jon-Paul Maria
{"title":"铁电Al1−xBxN溅射薄膜在n型Si底电极上","authors":"Ian Mercer, Chloe Skidmore, Sebastian Calderon, Elizabeth Dickey, Jon-Paul Maria","doi":"10.1007/s10853-025-11499-w","DOIUrl":null,"url":null,"abstract":"<div><p>Ferroelectric Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N thin films are grown on highly doped and plasma treated (100) <i>n</i>-type Si. We demonstrate ferroelectricity for <i>x</i> = < 0.01, 0.02, 0.06, 0.08, 0.13, and 0.17 where the <i>n</i>-type Si is both the substrate and bottom electrode. Polarization hysteresis reveals remanent polarization values between 130 and 140 μC/cm<sup>2</sup> and coercive field values as low as 4 MV/cm at 1 Hz with low leakage. The highest resistivity and most saturating hysteresis occurs with B contents between <i>x</i> = 0.06 and 0.13. We also demonstrate the impact of substrate plasma treatment time on Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N crystallinity and switching. Cross-sectional transmission electron microscopy and electron energy loss spectra reveal an amorphous 3.5 nm SiN<sub><i>x</i></sub> layer at the Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N interface post-plasma treatment and deposition. The first ~ 5 nm of Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N is crystallographically defective. Using the <i>n</i>-type Si substrate, we demonstrate Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N thickness scaling to 25 nm via low-frequency hysteresis and CV. Serving as the bottom electrode and substrate, the <i>n</i>-type Si enables a streamlined growth process for Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N for a wide range of Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N compositions and layer thicknesses.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 41","pages":"19781 - 19787"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10853-025-11499-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric Al1−xBxN sputtered thin films on n-type Si bottom electrodes\",\"authors\":\"Ian Mercer, Chloe Skidmore, Sebastian Calderon, Elizabeth Dickey, Jon-Paul Maria\",\"doi\":\"10.1007/s10853-025-11499-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ferroelectric Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N thin films are grown on highly doped and plasma treated (100) <i>n</i>-type Si. We demonstrate ferroelectricity for <i>x</i> = < 0.01, 0.02, 0.06, 0.08, 0.13, and 0.17 where the <i>n</i>-type Si is both the substrate and bottom electrode. Polarization hysteresis reveals remanent polarization values between 130 and 140 μC/cm<sup>2</sup> and coercive field values as low as 4 MV/cm at 1 Hz with low leakage. The highest resistivity and most saturating hysteresis occurs with B contents between <i>x</i> = 0.06 and 0.13. We also demonstrate the impact of substrate plasma treatment time on Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N crystallinity and switching. Cross-sectional transmission electron microscopy and electron energy loss spectra reveal an amorphous 3.5 nm SiN<sub><i>x</i></sub> layer at the Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N interface post-plasma treatment and deposition. The first ~ 5 nm of Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N is crystallographically defective. Using the <i>n</i>-type Si substrate, we demonstrate Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N thickness scaling to 25 nm via low-frequency hysteresis and CV. Serving as the bottom electrode and substrate, the <i>n</i>-type Si enables a streamlined growth process for Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N for a wide range of Al<sub>1−<i>x</i></sub>B<sub><i>x</i></sub>N compositions and layer thicknesses.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 41\",\"pages\":\"19781 - 19787\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10853-025-11499-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11499-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11499-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ferroelectric Al1−xBxN sputtered thin films on n-type Si bottom electrodes
Ferroelectric Al1−xBxN thin films are grown on highly doped and plasma treated (100) n-type Si. We demonstrate ferroelectricity for x = < 0.01, 0.02, 0.06, 0.08, 0.13, and 0.17 where the n-type Si is both the substrate and bottom electrode. Polarization hysteresis reveals remanent polarization values between 130 and 140 μC/cm2 and coercive field values as low as 4 MV/cm at 1 Hz with low leakage. The highest resistivity and most saturating hysteresis occurs with B contents between x = 0.06 and 0.13. We also demonstrate the impact of substrate plasma treatment time on Al1−xBxN crystallinity and switching. Cross-sectional transmission electron microscopy and electron energy loss spectra reveal an amorphous 3.5 nm SiNx layer at the Al1−xBxN interface post-plasma treatment and deposition. The first ~ 5 nm of Al1−xBxN is crystallographically defective. Using the n-type Si substrate, we demonstrate Al1−xBxN thickness scaling to 25 nm via low-frequency hysteresis and CV. Serving as the bottom electrode and substrate, the n-type Si enables a streamlined growth process for Al1−xBxN for a wide range of Al1−xBxN compositions and layer thicknesses.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.