钴掺杂的三斜铝硅酸钠纳米结构:结构、光学、磁性和电化学研究

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-10-16 DOI:10.1039/D5RA06560G
Ali B. Abou Hammad, A. M. Fathi, A. A. Azab, A. M. Mansour and Amany M. El Nahrawy
{"title":"钴掺杂的三斜铝硅酸钠纳米结构:结构、光学、磁性和电化学研究","authors":"Ali B. Abou Hammad, A. M. Fathi, A. A. Azab, A. M. Mansour and Amany M. El Nahrawy","doi":"10.1039/D5RA06560G","DOIUrl":null,"url":null,"abstract":"<p >Cobalt-doped sodium aluminosilicate nanostructures were synthesized <em>via</em> a sol–gel method and investigated for their structural, optical, magnetic, and electrochemical properties. X-ray diffraction confirmed the formation of a triclinic albite phase (NaAlSi<small><sub>3</sub></small>O<small><sub>8</sub></small>) with successful incorporation of Co<small><sup>2+</sup></small> ions into the aluminosilicate framework. Optical absorption studies revealed new bands associated with tetrahedral Co<small><sup>2+</sup></small> in Al<small><sub>2</sub></small>O<small><sub>3</sub></small> nanocrystals, and a systematic decrease in the optical band gap with increasing Co content due to the creation of localized states in the band gap. Magnetic measurements demonstrated a transition from diamagnetic behavior in the undoped sample to ferromagnetic behavior in Co-doped samples, with enhanced saturation magnetization linked to exchange interactions. Electrochemical studies showed that the sample with the lowest Co content (ANSS1Co) exhibited the highest specific capacitance (187 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small>) and excellent cycling stability, retaining 89.5% capacitance after 8000 cycles. These results highlight the potential of Co-doped sodium aluminosilicate nanostructures as stable electrode materials for energy storage applications.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 46","pages":" 38969-38985"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra06560g?page=search","citationCount":"0","resultStr":"{\"title\":\"Cobalt-incorporated triclinic sodium aluminosilicate nanostructures: structural, optical, magnetic, and electrochemical investigations\",\"authors\":\"Ali B. Abou Hammad, A. M. Fathi, A. A. Azab, A. M. Mansour and Amany M. El Nahrawy\",\"doi\":\"10.1039/D5RA06560G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cobalt-doped sodium aluminosilicate nanostructures were synthesized <em>via</em> a sol–gel method and investigated for their structural, optical, magnetic, and electrochemical properties. X-ray diffraction confirmed the formation of a triclinic albite phase (NaAlSi<small><sub>3</sub></small>O<small><sub>8</sub></small>) with successful incorporation of Co<small><sup>2+</sup></small> ions into the aluminosilicate framework. Optical absorption studies revealed new bands associated with tetrahedral Co<small><sup>2+</sup></small> in Al<small><sub>2</sub></small>O<small><sub>3</sub></small> nanocrystals, and a systematic decrease in the optical band gap with increasing Co content due to the creation of localized states in the band gap. Magnetic measurements demonstrated a transition from diamagnetic behavior in the undoped sample to ferromagnetic behavior in Co-doped samples, with enhanced saturation magnetization linked to exchange interactions. Electrochemical studies showed that the sample with the lowest Co content (ANSS1Co) exhibited the highest specific capacitance (187 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small>) and excellent cycling stability, retaining 89.5% capacitance after 8000 cycles. These results highlight the potential of Co-doped sodium aluminosilicate nanostructures as stable electrode materials for energy storage applications.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 46\",\"pages\":\" 38969-38985\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra06560g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra06560g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra06560g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用溶胶-凝胶法制备了钴掺杂铝硅酸钠纳米结构,并对其结构、光学、磁性和电化学性能进行了研究。x射线衍射证实了三斜钠长石相(NaAlSi3O8)的形成,并成功地将Co2+离子结合到铝硅酸盐框架中。光学吸收研究揭示了Al2O3纳米晶体中与四面体Co2+相关的新带,并且由于在带隙中产生局域态,光学带隙随着Co含量的增加而系统地减小。磁性测量表明,从未掺杂样品的抗磁性行为到共掺杂样品的铁磁性行为的转变,与交换相互作用相关的饱和磁化增强。电化学研究表明,Co含量最低的样品(ANSS1Co)具有最高的比电容(在1 A g−1时为187 F g−1)和优异的循环稳定性,在8000次循环后保持89.5%的电容。这些结果突出了共掺杂铝硅酸钠纳米结构作为稳定的储能电极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cobalt-incorporated triclinic sodium aluminosilicate nanostructures: structural, optical, magnetic, and electrochemical investigations

Cobalt-incorporated triclinic sodium aluminosilicate nanostructures: structural, optical, magnetic, and electrochemical investigations

Cobalt-doped sodium aluminosilicate nanostructures were synthesized via a sol–gel method and investigated for their structural, optical, magnetic, and electrochemical properties. X-ray diffraction confirmed the formation of a triclinic albite phase (NaAlSi3O8) with successful incorporation of Co2+ ions into the aluminosilicate framework. Optical absorption studies revealed new bands associated with tetrahedral Co2+ in Al2O3 nanocrystals, and a systematic decrease in the optical band gap with increasing Co content due to the creation of localized states in the band gap. Magnetic measurements demonstrated a transition from diamagnetic behavior in the undoped sample to ferromagnetic behavior in Co-doped samples, with enhanced saturation magnetization linked to exchange interactions. Electrochemical studies showed that the sample with the lowest Co content (ANSS1Co) exhibited the highest specific capacitance (187 F g−1 at 1 A g−1) and excellent cycling stability, retaining 89.5% capacitance after 8000 cycles. These results highlight the potential of Co-doped sodium aluminosilicate nanostructures as stable electrode materials for energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信