OWP-IMU:基于rss的光无线和IMU室内定位数据集

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Fan Wu;Jorik De Bruycker;Daan Delabie;Nobby Stevens;François Rottenberg;Lieven De Strycker
{"title":"OWP-IMU:基于rss的光无线和IMU室内定位数据集","authors":"Fan Wu;Jorik De Bruycker;Daan Delabie;Nobby Stevens;François Rottenberg;Lieven De Strycker","doi":"10.1109/LRA.2025.3615029","DOIUrl":null,"url":null,"abstract":"Received signal strength (RSS)-based optical wireless positioning (OWP) systems are becoming popular for indoor localization because they are low-cost and accurate. However, few open-source datasets are available to test and analyze RSS-based OWP systems. In this letter, we collected RSS values at a sampling frequency of <inline-formula><tex-math>$27 \\,\\mathrm{Hz}$</tex-math></inline-formula>, inertial measurement unit (IMU) at a sampling frequency of <inline-formula><tex-math>$200 \\,\\mathrm{Hz}$</tex-math></inline-formula> and the ground truth at a sampling frequency of <inline-formula><tex-math>$160 \\,\\mathrm{Hz}$</tex-math></inline-formula> in three indoor environments. The first scenario is obstacle-free, the second contains a metal column obstacle, and the third contains a letter rectangular obstacle, with both obstacles representing different non-line-of-sight (NLOS) scenarios. We recorded data with a vehicle at three different speeds (low, medium and high). The dataset includes over <inline-formula><tex-math>$160 \\,{\\mathrm{k}}$</tex-math></inline-formula> data points and covers more than <inline-formula><tex-math>$110 \\,\\min$</tex-math></inline-formula>. We also provide benchmark tests to show localization performance using only RSS-based OWP and improve accuracy by combining IMU data via extended kalman filter or transformer. The dataset OWP-IMU and accompanying benchmark results are open source to support further research on indoor localization methods.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 11","pages":"12103-12108"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OWP-IMU: An RSS-Based Optical Wireless and IMU Indoor Positioning Dataset\",\"authors\":\"Fan Wu;Jorik De Bruycker;Daan Delabie;Nobby Stevens;François Rottenberg;Lieven De Strycker\",\"doi\":\"10.1109/LRA.2025.3615029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received signal strength (RSS)-based optical wireless positioning (OWP) systems are becoming popular for indoor localization because they are low-cost and accurate. However, few open-source datasets are available to test and analyze RSS-based OWP systems. In this letter, we collected RSS values at a sampling frequency of <inline-formula><tex-math>$27 \\\\,\\\\mathrm{Hz}$</tex-math></inline-formula>, inertial measurement unit (IMU) at a sampling frequency of <inline-formula><tex-math>$200 \\\\,\\\\mathrm{Hz}$</tex-math></inline-formula> and the ground truth at a sampling frequency of <inline-formula><tex-math>$160 \\\\,\\\\mathrm{Hz}$</tex-math></inline-formula> in three indoor environments. The first scenario is obstacle-free, the second contains a metal column obstacle, and the third contains a letter rectangular obstacle, with both obstacles representing different non-line-of-sight (NLOS) scenarios. We recorded data with a vehicle at three different speeds (low, medium and high). The dataset includes over <inline-formula><tex-math>$160 \\\\,{\\\\mathrm{k}}$</tex-math></inline-formula> data points and covers more than <inline-formula><tex-math>$110 \\\\,\\\\min$</tex-math></inline-formula>. We also provide benchmark tests to show localization performance using only RSS-based OWP and improve accuracy by combining IMU data via extended kalman filter or transformer. The dataset OWP-IMU and accompanying benchmark results are open source to support further research on indoor localization methods.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 11\",\"pages\":\"12103-12108\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11180887/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11180887/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

基于接收信号强度(RSS)的光学无线定位(OWP)系统由于其低成本和准确,在室内定位中越来越受欢迎。然而,很少有开源数据集可用于测试和分析基于rss的OWP系统。在这封信中,我们在三个室内环境中收集了采样频率为$27 \ \ mathm {Hz}$的RSS值,采样频率为$200 \ \ mathm {Hz}$的惯性测量单元(IMU)和采样频率为$160 \ \ mathm {Hz}$的地面真值。第一个场景是无障碍的,第二个场景包含一个金属柱障碍物,第三个场景包含一个字母矩形障碍物,这两个障碍物代表不同的非视距(NLOS)场景。我们用一辆车以三种不同的速度(低、中、高)记录数据。数据集包括超过$160 \,{\ mathm {k}}$数据点,覆盖超过$110 \,\min$。我们还提供了基准测试,仅使用基于rss的OWP来显示定位性能,并通过扩展卡尔曼滤波器或变压器组合IMU数据来提高精度。数据集OWP-IMU和附带的基准结果是开源的,以支持室内定位方法的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OWP-IMU: An RSS-Based Optical Wireless and IMU Indoor Positioning Dataset
Received signal strength (RSS)-based optical wireless positioning (OWP) systems are becoming popular for indoor localization because they are low-cost and accurate. However, few open-source datasets are available to test and analyze RSS-based OWP systems. In this letter, we collected RSS values at a sampling frequency of $27 \,\mathrm{Hz}$, inertial measurement unit (IMU) at a sampling frequency of $200 \,\mathrm{Hz}$ and the ground truth at a sampling frequency of $160 \,\mathrm{Hz}$ in three indoor environments. The first scenario is obstacle-free, the second contains a metal column obstacle, and the third contains a letter rectangular obstacle, with both obstacles representing different non-line-of-sight (NLOS) scenarios. We recorded data with a vehicle at three different speeds (low, medium and high). The dataset includes over $160 \,{\mathrm{k}}$ data points and covers more than $110 \,\min$. We also provide benchmark tests to show localization performance using only RSS-based OWP and improve accuracy by combining IMU data via extended kalman filter or transformer. The dataset OWP-IMU and accompanying benchmark results are open source to support further research on indoor localization methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信