利用原始ADC数据增强FMCW雷达热图目标检测

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Long Zhuang;Yiqing Yao;Taihong Yang;Zijian Wang;Tao Zhang
{"title":"利用原始ADC数据增强FMCW雷达热图目标检测","authors":"Long Zhuang;Yiqing Yao;Taihong Yang;Zijian Wang;Tao Zhang","doi":"10.1109/LRA.2025.3617727","DOIUrl":null,"url":null,"abstract":"Millimeter-wave (mmWave) radar is crucial for environmental perception in autonomous driving, especially under complex conditions. While radar heatmaps provide richer information than point clouds, extracting semantic details from heatmaps alone remains challenging. To address this, we propose leveraging raw radar Analog-to-Digital Converter (ADC) data and introduce Mamba-RODNet, a novel network that integrates radar heatmaps with ADC data. For long-sequence modeling such as ADC, Mamba outperforms Transformers in both accuracy and efficiency, making it well suited for autonomous driving perception. We further design an ADC-Mamba (AM) module that fuses multi-scale features from ADC and heatmaps, enhancing detection performance. Experiments on the large-scale RADDet dataset show that our method achieves state-of-the-art results in both average precision (AP) and floating point operations per second (FLOPs). Ablation studies demonstrate that incorporating ADC data improves mean Average Precision (mAP) by 7%. In summary, this work establishes a new paradigm for integrating raw mmWave radar ADC data into object detection, with significant implications for the field. Our code is available at here.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 11","pages":"12087-12094"},"PeriodicalIF":5.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting FMCW Radar Heat Map Object Detection With Raw ADC Data\",\"authors\":\"Long Zhuang;Yiqing Yao;Taihong Yang;Zijian Wang;Tao Zhang\",\"doi\":\"10.1109/LRA.2025.3617727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter-wave (mmWave) radar is crucial for environmental perception in autonomous driving, especially under complex conditions. While radar heatmaps provide richer information than point clouds, extracting semantic details from heatmaps alone remains challenging. To address this, we propose leveraging raw radar Analog-to-Digital Converter (ADC) data and introduce Mamba-RODNet, a novel network that integrates radar heatmaps with ADC data. For long-sequence modeling such as ADC, Mamba outperforms Transformers in both accuracy and efficiency, making it well suited for autonomous driving perception. We further design an ADC-Mamba (AM) module that fuses multi-scale features from ADC and heatmaps, enhancing detection performance. Experiments on the large-scale RADDet dataset show that our method achieves state-of-the-art results in both average precision (AP) and floating point operations per second (FLOPs). Ablation studies demonstrate that incorporating ADC data improves mean Average Precision (mAP) by 7%. In summary, this work establishes a new paradigm for integrating raw mmWave radar ADC data into object detection, with significant implications for the field. Our code is available at here.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 11\",\"pages\":\"12087-12094\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11192687/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11192687/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

毫米波(mmWave)雷达对于自动驾驶中的环境感知至关重要,特别是在复杂条件下。虽然雷达热图提供了比点云更丰富的信息,但仅从热图中提取语义细节仍然具有挑战性。为了解决这个问题,我们建议利用原始雷达模数转换器(ADC)数据,并引入Mamba-RODNet,这是一种集成雷达热图和ADC数据的新型网络。对于长序列建模,如ADC, Mamba在精度和效率方面都优于transformer,使其非常适合自动驾驶感知。我们进一步设计了一个ADC-曼巴(AM)模块,融合了ADC和热图的多尺度特征,提高了检测性能。在大规模RADDet数据集上的实验表明,我们的方法在平均精度(AP)和每秒浮点运算(FLOPs)方面都达到了最先进的结果。消融研究表明,结合ADC数据可将平均精度(mAP)提高7%。总之,这项工作为将原始毫米波雷达ADC数据集成到目标检测中建立了一个新的范例,对该领域具有重要意义。我们的代码可以在这里找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting FMCW Radar Heat Map Object Detection With Raw ADC Data
Millimeter-wave (mmWave) radar is crucial for environmental perception in autonomous driving, especially under complex conditions. While radar heatmaps provide richer information than point clouds, extracting semantic details from heatmaps alone remains challenging. To address this, we propose leveraging raw radar Analog-to-Digital Converter (ADC) data and introduce Mamba-RODNet, a novel network that integrates radar heatmaps with ADC data. For long-sequence modeling such as ADC, Mamba outperforms Transformers in both accuracy and efficiency, making it well suited for autonomous driving perception. We further design an ADC-Mamba (AM) module that fuses multi-scale features from ADC and heatmaps, enhancing detection performance. Experiments on the large-scale RADDet dataset show that our method achieves state-of-the-art results in both average precision (AP) and floating point operations per second (FLOPs). Ablation studies demonstrate that incorporating ADC data improves mean Average Precision (mAP) by 7%. In summary, this work establishes a new paradigm for integrating raw mmWave radar ADC data into object detection, with significant implications for the field. Our code is available at here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信