Ahmad Halimi Razlighi;Carsten Bockelmann;Armin Dekorsy
{"title":"基于隐式最优先验的有限速率无线信道协同多任务语义通信","authors":"Ahmad Halimi Razlighi;Carsten Bockelmann;Armin Dekorsy","doi":"10.1109/OJCOMS.2025.3617156","DOIUrl":null,"url":null,"abstract":"In this work, we expand the cooperative multi-task semantic communication framework (CMT-SemCom) introduced in [1], which divides the semantic encoder on the transmitter side into a common unit (CU) and multiple specific units (SUs), to a more applicable design. Our proposed system model addresses real-world constraints by introducing a general design that operates over rate-limited wireless channels. Further, we aim to tackle the rate-limit constraint, represented through the Kullback-Leibler (KL) divergence, by employing the density ratio trick alongside the implicit optimal prior method (IoPm). By applying the IoPm to our multi-task processing framework, we propose a hybrid-learning approach that combines deep neural networks with kernelized-parametric machine learning methods, enabling a robust solution for the CMT-SemCom. Our framework is grounded in information-theoretic principles and employs variational approximations to bridge theoretical foundations with practical implementations. Simulation results demonstrate the proposed system’s effectiveness in rate-constrained multi-task SemCom scenarios, highlighting its potential for enabling intelligence in next-generation wireless networks.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"8523-8538"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11190017","citationCount":"0","resultStr":"{\"title\":\"Semantic Communication for Cooperative Multi-Tasking Over Rate-Limited Wireless Channels With Implicit Optimal Prior\",\"authors\":\"Ahmad Halimi Razlighi;Carsten Bockelmann;Armin Dekorsy\",\"doi\":\"10.1109/OJCOMS.2025.3617156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we expand the cooperative multi-task semantic communication framework (CMT-SemCom) introduced in [1], which divides the semantic encoder on the transmitter side into a common unit (CU) and multiple specific units (SUs), to a more applicable design. Our proposed system model addresses real-world constraints by introducing a general design that operates over rate-limited wireless channels. Further, we aim to tackle the rate-limit constraint, represented through the Kullback-Leibler (KL) divergence, by employing the density ratio trick alongside the implicit optimal prior method (IoPm). By applying the IoPm to our multi-task processing framework, we propose a hybrid-learning approach that combines deep neural networks with kernelized-parametric machine learning methods, enabling a robust solution for the CMT-SemCom. Our framework is grounded in information-theoretic principles and employs variational approximations to bridge theoretical foundations with practical implementations. Simulation results demonstrate the proposed system’s effectiveness in rate-constrained multi-task SemCom scenarios, highlighting its potential for enabling intelligence in next-generation wireless networks.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"6 \",\"pages\":\"8523-8538\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11190017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11190017/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11190017/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Semantic Communication for Cooperative Multi-Tasking Over Rate-Limited Wireless Channels With Implicit Optimal Prior
In this work, we expand the cooperative multi-task semantic communication framework (CMT-SemCom) introduced in [1], which divides the semantic encoder on the transmitter side into a common unit (CU) and multiple specific units (SUs), to a more applicable design. Our proposed system model addresses real-world constraints by introducing a general design that operates over rate-limited wireless channels. Further, we aim to tackle the rate-limit constraint, represented through the Kullback-Leibler (KL) divergence, by employing the density ratio trick alongside the implicit optimal prior method (IoPm). By applying the IoPm to our multi-task processing framework, we propose a hybrid-learning approach that combines deep neural networks with kernelized-parametric machine learning methods, enabling a robust solution for the CMT-SemCom. Our framework is grounded in information-theoretic principles and employs variational approximations to bridge theoretical foundations with practical implementations. Simulation results demonstrate the proposed system’s effectiveness in rate-constrained multi-task SemCom scenarios, highlighting its potential for enabling intelligence in next-generation wireless networks.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.