基于自适应信号分解的航机实时鲁棒异常检测

IF 11.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Limao Zhang , Jianzhe Jiang , Jiaqi Wang , Zhonghua Xiao , Feilong Fei
{"title":"基于自适应信号分解的航机实时鲁棒异常检测","authors":"Limao Zhang ,&nbsp;Jianzhe Jiang ,&nbsp;Jiaqi Wang ,&nbsp;Zhonghua Xiao ,&nbsp;Feilong Fei","doi":"10.1016/j.autcon.2025.106583","DOIUrl":null,"url":null,"abstract":"<div><div>Aerial Building Machine (ABM) is an integrated system for high-rise construction that faces challenges in real-time anomaly detection during operation. This paper proposes an adaptive detection approach combining Variational Mode Decomposition (VMD) and Wavelet Packet Energy Spectrum (WPES) to enhance operational safety. A real case of a 74-floor, 356-m project in Shenzhen demonstrates feasibility and effectiveness. Results show that: (1) the method adaptively detects anomalies in construction and lifting phases, verified by 12 sets of operational data; (2) it exhibits strong robustness, with maximum variation rates of warning indicators of 3.51 % and 2.48 % under Gaussian noise (1 %–5 %), compared to 8.53 % and 8.59 % for traditional methods; and (3) the proposed method demonstrates significant suppression of baseline drift, confining the variation rates of warning indicators below 5% under random-walk disturbances. The contribution lies in using VMD-based Adaptive WPES (VMD–AWPES) for adaptive signal analysis, enabling robust, intelligent anomaly detection in ABM operation. This paper addresses a gap in real-time anomaly detection and promotes intelligent safety management in high-rise construction.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"181 ","pages":"Article 106583"},"PeriodicalIF":11.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust real-time anomaly detection for aerial building machines using adaptive signal decomposition\",\"authors\":\"Limao Zhang ,&nbsp;Jianzhe Jiang ,&nbsp;Jiaqi Wang ,&nbsp;Zhonghua Xiao ,&nbsp;Feilong Fei\",\"doi\":\"10.1016/j.autcon.2025.106583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aerial Building Machine (ABM) is an integrated system for high-rise construction that faces challenges in real-time anomaly detection during operation. This paper proposes an adaptive detection approach combining Variational Mode Decomposition (VMD) and Wavelet Packet Energy Spectrum (WPES) to enhance operational safety. A real case of a 74-floor, 356-m project in Shenzhen demonstrates feasibility and effectiveness. Results show that: (1) the method adaptively detects anomalies in construction and lifting phases, verified by 12 sets of operational data; (2) it exhibits strong robustness, with maximum variation rates of warning indicators of 3.51 % and 2.48 % under Gaussian noise (1 %–5 %), compared to 8.53 % and 8.59 % for traditional methods; and (3) the proposed method demonstrates significant suppression of baseline drift, confining the variation rates of warning indicators below 5% under random-walk disturbances. The contribution lies in using VMD-based Adaptive WPES (VMD–AWPES) for adaptive signal analysis, enabling robust, intelligent anomaly detection in ABM operation. This paper addresses a gap in real-time anomaly detection and promotes intelligent safety management in high-rise construction.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"181 \",\"pages\":\"Article 106583\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525006235\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525006235","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高空施工机(ABM)是一种用于高层建筑施工的综合系统,在运行过程中如何实时检测异常是一个难题。本文提出了一种结合变分模态分解(VMD)和小波包能量谱(WPES)的自适应检测方法,以提高运行安全性。深圳一个74层356米的项目的实际案例证明了其可行性和有效性。结果表明:(1)该方法自适应检测施工和吊装阶段的异常,经12组运行数据验证;(2)该方法具有较强的鲁棒性,在高斯噪声范围(1% ~ 5%)下,预警指标的最大变化率分别为3.51%和2.48%,而传统方法的最大变化率分别为8.53%和8.59%;(3)该方法对基线漂移有明显的抑制作用,在随机游走干扰下,预警指标的变化率控制在5%以下。贡献在于使用基于vmd的自适应WPES (VMD-AWPES)进行自适应信号分析,从而在ABM操作中实现鲁棒、智能的异常检测。解决了高层建筑实时异常检测的空白,促进了高层建筑安全管理的智能化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust real-time anomaly detection for aerial building machines using adaptive signal decomposition
Aerial Building Machine (ABM) is an integrated system for high-rise construction that faces challenges in real-time anomaly detection during operation. This paper proposes an adaptive detection approach combining Variational Mode Decomposition (VMD) and Wavelet Packet Energy Spectrum (WPES) to enhance operational safety. A real case of a 74-floor, 356-m project in Shenzhen demonstrates feasibility and effectiveness. Results show that: (1) the method adaptively detects anomalies in construction and lifting phases, verified by 12 sets of operational data; (2) it exhibits strong robustness, with maximum variation rates of warning indicators of 3.51 % and 2.48 % under Gaussian noise (1 %–5 %), compared to 8.53 % and 8.59 % for traditional methods; and (3) the proposed method demonstrates significant suppression of baseline drift, confining the variation rates of warning indicators below 5% under random-walk disturbances. The contribution lies in using VMD-based Adaptive WPES (VMD–AWPES) for adaptive signal analysis, enabling robust, intelligent anomaly detection in ABM operation. This paper addresses a gap in real-time anomaly detection and promotes intelligent safety management in high-rise construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信