使用基于深度学习的框架全自动合成BIM数据集生成

IF 11.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Xing Liang , Nobuyoshi Yabuki , Tomohiro Fukuda
{"title":"使用基于深度学习的框架全自动合成BIM数据集生成","authors":"Xing Liang ,&nbsp;Nobuyoshi Yabuki ,&nbsp;Tomohiro Fukuda","doi":"10.1016/j.autcon.2025.106584","DOIUrl":null,"url":null,"abstract":"<div><div>Building information models (BIMs) are essential for efficient building operation, yet most existing buildings only have two-dimensional (2D) drawings, leading to increased interest in 2D-to-BIM reconstruction. To address the data scarcity hindering automated BIM reconstruction and evaluation, this paper presents a deep learning-based fully automated framework for BIM dataset generation. The approach uses image processing to define polygonal boundaries, applies neural networks to generate geometric layouts, and augments semantic information with predefined data for BIM generation via software application programming interfaces (APIs). The resulting Residential unit BIM (ResBIM) is a synthetic dataset comprising over 1000 paired BIMs (RVT format) and their corresponding 2D floor plans automatically annotated via a toolbox, filling a critical gap in BIM data availability. This work provides a scalable automated BIM reconstruction solution and establishes the foundation for future AI-driven BIM automation research.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"181 ","pages":"Article 106584"},"PeriodicalIF":11.5000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully automated synthetic BIM dataset generation using a deep learning-based framework\",\"authors\":\"Xing Liang ,&nbsp;Nobuyoshi Yabuki ,&nbsp;Tomohiro Fukuda\",\"doi\":\"10.1016/j.autcon.2025.106584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Building information models (BIMs) are essential for efficient building operation, yet most existing buildings only have two-dimensional (2D) drawings, leading to increased interest in 2D-to-BIM reconstruction. To address the data scarcity hindering automated BIM reconstruction and evaluation, this paper presents a deep learning-based fully automated framework for BIM dataset generation. The approach uses image processing to define polygonal boundaries, applies neural networks to generate geometric layouts, and augments semantic information with predefined data for BIM generation via software application programming interfaces (APIs). The resulting Residential unit BIM (ResBIM) is a synthetic dataset comprising over 1000 paired BIMs (RVT format) and their corresponding 2D floor plans automatically annotated via a toolbox, filling a critical gap in BIM data availability. This work provides a scalable automated BIM reconstruction solution and establishes the foundation for future AI-driven BIM automation research.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"181 \",\"pages\":\"Article 106584\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525006247\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525006247","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

建筑信息模型(bim)对于高效的建筑运营至关重要,然而大多数现有建筑只有二维(2D)图纸,这导致人们对二维到bim重建的兴趣增加。为了解决阻碍BIM自动化重建和评估的数据稀缺性问题,本文提出了一种基于深度学习的BIM数据集生成全自动化框架。该方法使用图像处理来定义多边形边界,应用神经网络来生成几何布局,并通过软件应用程序编程接口(api)通过预定义数据来增强BIM生成的语义信息。由此产生的住宅单元BIM (ResBIM)是一个合成数据集,包括超过1000对BIM (RVT格式)及其相应的2D平面图,通过工具箱自动注释,填补了BIM数据可用性的关键空白。这项工作提供了一个可扩展的自动化BIM重建解决方案,并为未来ai驱动的BIM自动化研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully automated synthetic BIM dataset generation using a deep learning-based framework
Building information models (BIMs) are essential for efficient building operation, yet most existing buildings only have two-dimensional (2D) drawings, leading to increased interest in 2D-to-BIM reconstruction. To address the data scarcity hindering automated BIM reconstruction and evaluation, this paper presents a deep learning-based fully automated framework for BIM dataset generation. The approach uses image processing to define polygonal boundaries, applies neural networks to generate geometric layouts, and augments semantic information with predefined data for BIM generation via software application programming interfaces (APIs). The resulting Residential unit BIM (ResBIM) is a synthetic dataset comprising over 1000 paired BIMs (RVT format) and their corresponding 2D floor plans automatically annotated via a toolbox, filling a critical gap in BIM data availability. This work provides a scalable automated BIM reconstruction solution and establishes the foundation for future AI-driven BIM automation research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信