{"title":"基于注意力引导融合的自监督多尺度变压器裂纹检测方法","authors":"Blessing Agyei Kyem, Joshua Kofi Asamoah, Eugene Denteh, Andrews Danyo, Armstrong Aboah","doi":"10.1016/j.autcon.2025.106591","DOIUrl":null,"url":null,"abstract":"<div><div>Pavement crack detection has long depended on costly and time-intensive pixel-level annotations, which limit its scalability for large-scale infrastructure monitoring. To overcome this barrier, this paper examines the feasibility of achieving effective pixel-level crack segmentation entirely without manual annotations. Building on this objective, a fully self-supervised framework, Crack-Segmenter, is developed, integrating three complementary modules: the Scale-Adaptive Embedder (SAE) for robust multi-scale feature extraction, the Directional Attention Transformer (DAT) for maintaining linear crack continuity, and the Attention-Guided Fusion (AGF) module for adaptive feature integration. Through evaluations on ten public datasets, Crack-Segmenter consistently outperforms 13 state-of-the-art supervised methods across all major metrics, including mean Intersection over Union (mIoU), Dice score, XOR, and Hausdorff Distance (HD). These findings demonstrate that annotation-free crack detection is not only feasible but also superior, enabling transportation agencies and infrastructure managers to conduct scalable and cost-effective monitoring. This work advances self-supervised learning and motivates pavement cracks detection research.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"181 ","pages":"Article 106591"},"PeriodicalIF":11.5000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-supervised multi-scale transformer with Attention-Guided Fusion for efficient crack detection\",\"authors\":\"Blessing Agyei Kyem, Joshua Kofi Asamoah, Eugene Denteh, Andrews Danyo, Armstrong Aboah\",\"doi\":\"10.1016/j.autcon.2025.106591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pavement crack detection has long depended on costly and time-intensive pixel-level annotations, which limit its scalability for large-scale infrastructure monitoring. To overcome this barrier, this paper examines the feasibility of achieving effective pixel-level crack segmentation entirely without manual annotations. Building on this objective, a fully self-supervised framework, Crack-Segmenter, is developed, integrating three complementary modules: the Scale-Adaptive Embedder (SAE) for robust multi-scale feature extraction, the Directional Attention Transformer (DAT) for maintaining linear crack continuity, and the Attention-Guided Fusion (AGF) module for adaptive feature integration. Through evaluations on ten public datasets, Crack-Segmenter consistently outperforms 13 state-of-the-art supervised methods across all major metrics, including mean Intersection over Union (mIoU), Dice score, XOR, and Hausdorff Distance (HD). These findings demonstrate that annotation-free crack detection is not only feasible but also superior, enabling transportation agencies and infrastructure managers to conduct scalable and cost-effective monitoring. This work advances self-supervised learning and motivates pavement cracks detection research.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"181 \",\"pages\":\"Article 106591\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525006314\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525006314","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Self-supervised multi-scale transformer with Attention-Guided Fusion for efficient crack detection
Pavement crack detection has long depended on costly and time-intensive pixel-level annotations, which limit its scalability for large-scale infrastructure monitoring. To overcome this barrier, this paper examines the feasibility of achieving effective pixel-level crack segmentation entirely without manual annotations. Building on this objective, a fully self-supervised framework, Crack-Segmenter, is developed, integrating three complementary modules: the Scale-Adaptive Embedder (SAE) for robust multi-scale feature extraction, the Directional Attention Transformer (DAT) for maintaining linear crack continuity, and the Attention-Guided Fusion (AGF) module for adaptive feature integration. Through evaluations on ten public datasets, Crack-Segmenter consistently outperforms 13 state-of-the-art supervised methods across all major metrics, including mean Intersection over Union (mIoU), Dice score, XOR, and Hausdorff Distance (HD). These findings demonstrate that annotation-free crack detection is not only feasible but also superior, enabling transportation agencies and infrastructure managers to conduct scalable and cost-effective monitoring. This work advances self-supervised learning and motivates pavement cracks detection research.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.