利用多层感知器神经网络估计6Li(d,[公式省略])4He反应中的电子屏蔽电位

IF 2.8 3区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
D. Chattopadhyay
{"title":"利用多层感知器神经网络估计6Li(d,[公式省略])4He反应中的电子屏蔽电位","authors":"D. Chattopadhyay","doi":"10.1016/j.radphyschem.2025.113366","DOIUrl":null,"url":null,"abstract":"Reactions between light charged nuclei at sub-Coulomb energies are crucial in astrophysical environments, but accurate cross-section measurements are hindered by electron screening. Conventional approaches, such as polynomial extrapolation and the Trojan Horse Method, frequently predict screening potentials that exceed adiabatic estimates. Building on the success of a Multi-Layer Perceptron (MLP)-based Artificial Neural Network (ANN) for the <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\"normal\">Li</mml:mi><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>α</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\"normal\">He</mml:mi></mml:mrow></mml:math> reaction (Chattopadhyay, 2024), this work applies the same methodology to the <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\"normal\">Li</mml:mi><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>d</mml:mi><mml:mo>,</mml:mo><mml:mi>α</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\"normal\">He</mml:mi></mml:mrow></mml:math> reaction. The experimental data on the astrophysical S-factor from the literature are reanalyzed using the ANN to model the energy dependence of the S-factor. The bare S-factor is extracted from data above 70 keV, where screening effects are minimal, and the screening potential is determined by comparing it with the screened S-factor in the low-energy region. The resulting screening potential is 147.95 ± 13 eV, demonstrating the effectiveness and robustness of ANN-based methods for evaluating electron screening in low-energy nuclear reactions involving light nuclei.","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of electron screening potential in the 6Li(d, [formula omitted])4He reaction using multi-layer perceptron neural network\",\"authors\":\"D. Chattopadhyay\",\"doi\":\"10.1016/j.radphyschem.2025.113366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactions between light charged nuclei at sub-Coulomb energies are crucial in astrophysical environments, but accurate cross-section measurements are hindered by electron screening. Conventional approaches, such as polynomial extrapolation and the Trojan Horse Method, frequently predict screening potentials that exceed adiabatic estimates. Building on the success of a Multi-Layer Perceptron (MLP)-based Artificial Neural Network (ANN) for the <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\\\"normal\\\">Li</mml:mi><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>α</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\\\"normal\\\">He</mml:mi></mml:mrow></mml:math> reaction (Chattopadhyay, 2024), this work applies the same methodology to the <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\\\"normal\\\">Li</mml:mi><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>d</mml:mi><mml:mo>,</mml:mo><mml:mi>α</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\\\"normal\\\">He</mml:mi></mml:mrow></mml:math> reaction. The experimental data on the astrophysical S-factor from the literature are reanalyzed using the ANN to model the energy dependence of the S-factor. The bare S-factor is extracted from data above 70 keV, where screening effects are minimal, and the screening potential is determined by comparing it with the screened S-factor in the low-energy region. The resulting screening potential is 147.95 ± 13 eV, demonstrating the effectiveness and robustness of ANN-based methods for evaluating electron screening in low-energy nuclear reactions involving light nuclei.\",\"PeriodicalId\":20861,\"journal\":{\"name\":\"Radiation Physics and Chemistry\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Physics and Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.radphyschem.2025.113366\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.radphyschem.2025.113366","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

亚库仑能量的轻带电核之间的反应在天体物理环境中是至关重要的,但精确的截面测量受到电子筛选的阻碍。传统的方法,如多项式外推法和特洛伊木马法,经常预测筛分潜力超过绝热估计。基于基于多层感知器(MLP)的人工神经网络(ANN)在6Li(p,α)3He反应中的成功(Chattopadhyay, 2024),本研究将相同的方法应用于6Li(d,α)4He反应。利用人工神经网络对文献中天体物理s因子的实验数据进行了重新分析,建立了s因子的能量依赖性模型。裸s因子是从70 keV以上的数据中提取的,在70 keV以上的数据中,筛选效应最小,通过将其与低能区筛选的s因子进行比较来确定筛选势。所得的筛选电位为147.95±13 eV,证明了基于神经网络的方法在评估涉及轻核的低能核反应中电子筛选的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of electron screening potential in the 6Li(d, [formula omitted])4He reaction using multi-layer perceptron neural network
Reactions between light charged nuclei at sub-Coulomb energies are crucial in astrophysical environments, but accurate cross-section measurements are hindered by electron screening. Conventional approaches, such as polynomial extrapolation and the Trojan Horse Method, frequently predict screening potentials that exceed adiabatic estimates. Building on the success of a Multi-Layer Perceptron (MLP)-based Artificial Neural Network (ANN) for the 6Li(p,α)3He reaction (Chattopadhyay, 2024), this work applies the same methodology to the 6Li(d,α)4He reaction. The experimental data on the astrophysical S-factor from the literature are reanalyzed using the ANN to model the energy dependence of the S-factor. The bare S-factor is extracted from data above 70 keV, where screening effects are minimal, and the screening potential is determined by comparing it with the screened S-factor in the low-energy region. The resulting screening potential is 147.95 ± 13 eV, demonstrating the effectiveness and robustness of ANN-based methods for evaluating electron screening in low-energy nuclear reactions involving light nuclei.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation Physics and Chemistry
Radiation Physics and Chemistry 化学-核科学技术
CiteScore
5.60
自引率
17.20%
发文量
574
审稿时长
12 weeks
期刊介绍: Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信