柠檬酸-山梨醇深度共熔溶剂,用于木质纤维素生物质的高效分解和随后的乙醇发酵

IF 6.2 1区 农林科学 Q1 AGRICULTURAL ENGINEERING
Niuniu Deng, Qiang Li, Wenjie Wang, Gengsheng Ji, Kaiyuan Wang, Jingyi Wu, Yanliang Chu, Xitao Cao
{"title":"柠檬酸-山梨醇深度共熔溶剂,用于木质纤维素生物质的高效分解和随后的乙醇发酵","authors":"Niuniu Deng,&nbsp;Qiang Li,&nbsp;Wenjie Wang,&nbsp;Gengsheng Ji,&nbsp;Kaiyuan Wang,&nbsp;Jingyi Wu,&nbsp;Yanliang Chu,&nbsp;Xitao Cao","doi":"10.1016/j.indcrop.2025.122132","DOIUrl":null,"url":null,"abstract":"<div><div>Native lignocellulosic biomass is notoriously recalcitrant because of its highly ordered cellulose crystallites and the encapsulating lignin–hemicellulose matrix, which greatly limits enzymatic hydrolysis and subsequent bioconversion. To overcome this barrier, we set out to design a fully biomass‑derived, recyclable pretreatment solvent capable of selectively disrupting cellulose crystallinity under mild conditions. Here, we report a family of deep eutectic solvents (DES) constituted from polycarboxylic acids (Citric and Tartaric acids) and polyols (Ethylene glycol, Glycerol, Sorbitol) and evaluate their pretreatment efficacy for corn stover. Multiscale characterization by NMR, FT‑IR, XRD, and rheology elucidated the hydrogen‑bond network architectures, viscosity profiles, and their mechanistic roles in the structural transformation of stover cellulose. Among the tested systems, the Citric acid–Sorbitol (CA–Sor) DES featured an optimised hydrogen‑bond network and moderate viscosity (72.2 mPa·s), reducing cellulose crystallinity from 62.3 % to 34.8 % and boosting reducing sugar conversion rate to 89.10 % within 72 h. The resulting hydrolysate could be directly fermented to ethanol without detoxification, achieving an 84 % glucose‑to‑ethanol conversion efficiency. This study therefore furnishes a novel, efficient, and recyclable green pretreatment strategy for the high‑value biorefining of agricultural residues and highlights its attractive potential for industrial deployment.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"237 ","pages":"Article 122132"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Citric acid-sorbitol deep eutectic solvent for efficient deconstruction of lignocellulosic biomass and subsequent ethanol fermentation\",\"authors\":\"Niuniu Deng,&nbsp;Qiang Li,&nbsp;Wenjie Wang,&nbsp;Gengsheng Ji,&nbsp;Kaiyuan Wang,&nbsp;Jingyi Wu,&nbsp;Yanliang Chu,&nbsp;Xitao Cao\",\"doi\":\"10.1016/j.indcrop.2025.122132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Native lignocellulosic biomass is notoriously recalcitrant because of its highly ordered cellulose crystallites and the encapsulating lignin–hemicellulose matrix, which greatly limits enzymatic hydrolysis and subsequent bioconversion. To overcome this barrier, we set out to design a fully biomass‑derived, recyclable pretreatment solvent capable of selectively disrupting cellulose crystallinity under mild conditions. Here, we report a family of deep eutectic solvents (DES) constituted from polycarboxylic acids (Citric and Tartaric acids) and polyols (Ethylene glycol, Glycerol, Sorbitol) and evaluate their pretreatment efficacy for corn stover. Multiscale characterization by NMR, FT‑IR, XRD, and rheology elucidated the hydrogen‑bond network architectures, viscosity profiles, and their mechanistic roles in the structural transformation of stover cellulose. Among the tested systems, the Citric acid–Sorbitol (CA–Sor) DES featured an optimised hydrogen‑bond network and moderate viscosity (72.2 mPa·s), reducing cellulose crystallinity from 62.3 % to 34.8 % and boosting reducing sugar conversion rate to 89.10 % within 72 h. The resulting hydrolysate could be directly fermented to ethanol without detoxification, achieving an 84 % glucose‑to‑ethanol conversion efficiency. This study therefore furnishes a novel, efficient, and recyclable green pretreatment strategy for the high‑value biorefining of agricultural residues and highlights its attractive potential for industrial deployment.</div></div>\",\"PeriodicalId\":13581,\"journal\":{\"name\":\"Industrial Crops and Products\",\"volume\":\"237 \",\"pages\":\"Article 122132\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Crops and Products\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926669025016784\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669025016784","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

由于其高度有序的纤维素晶体和包封的木质素-半纤维素基质,天然木质纤维素生物质是出了名的难降解,这极大地限制了酶水解和随后的生物转化。为了克服这一障碍,我们着手设计一种完全生物质衍生的、可回收的预处理溶剂,能够在温和条件下选择性地破坏纤维素的结晶度。本文报道了一类由多羧酸(柠檬酸和酒石酸)和多元醇(乙二醇、甘油、山梨醇)组成的深共晶溶剂(DES),并评价了它们对玉米秸秆的预处理效果。通过NMR、FT - IR、XRD和流变学等多尺度表征,阐明了秸秆纤维素的氢键网络结构、粘度分布及其在结构转化中的机理作用。在测试体系中,柠檬酸-山梨醇(CA-Sor) DES具有优化的氢键网络和适中的粘度(72.2 mPa·s),在72 h内将纤维素结晶度从62.3 %降低到34.8 %,还原糖转化率提高到89.10 %。所得到的水解产物可以直接发酵成乙醇而不解毒,达到84 %的葡萄糖-乙醇转化效率。因此,本研究为农业残留物的高价值生物精制提供了一种新颖、高效、可回收的绿色预处理策略,并突出了其在工业应用中的吸引力潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Citric acid-sorbitol deep eutectic solvent for efficient deconstruction of lignocellulosic biomass and subsequent ethanol fermentation
Native lignocellulosic biomass is notoriously recalcitrant because of its highly ordered cellulose crystallites and the encapsulating lignin–hemicellulose matrix, which greatly limits enzymatic hydrolysis and subsequent bioconversion. To overcome this barrier, we set out to design a fully biomass‑derived, recyclable pretreatment solvent capable of selectively disrupting cellulose crystallinity under mild conditions. Here, we report a family of deep eutectic solvents (DES) constituted from polycarboxylic acids (Citric and Tartaric acids) and polyols (Ethylene glycol, Glycerol, Sorbitol) and evaluate their pretreatment efficacy for corn stover. Multiscale characterization by NMR, FT‑IR, XRD, and rheology elucidated the hydrogen‑bond network architectures, viscosity profiles, and their mechanistic roles in the structural transformation of stover cellulose. Among the tested systems, the Citric acid–Sorbitol (CA–Sor) DES featured an optimised hydrogen‑bond network and moderate viscosity (72.2 mPa·s), reducing cellulose crystallinity from 62.3 % to 34.8 % and boosting reducing sugar conversion rate to 89.10 % within 72 h. The resulting hydrolysate could be directly fermented to ethanol without detoxification, achieving an 84 % glucose‑to‑ethanol conversion efficiency. This study therefore furnishes a novel, efficient, and recyclable green pretreatment strategy for the high‑value biorefining of agricultural residues and highlights its attractive potential for industrial deployment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Crops and Products
Industrial Crops and Products 农林科学-农业工程
CiteScore
9.50
自引率
8.50%
发文量
1518
审稿时长
43 days
期刊介绍: Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信