基于特征不可知自动对焦和多目标可分离相位检索的宽视场、伪影抑制无透镜显微镜

IF 10 1区 物理与天体物理 Q1 OPTICS
Ziyang Li, Xuyang Zhou, Sida Gao, Guancheng Huang, Ziling Qiao, Zhengyu Wu, Yutong Li, Shutian Liu, Zhengjun Liu
{"title":"基于特征不可知自动对焦和多目标可分离相位检索的宽视场、伪影抑制无透镜显微镜","authors":"Ziyang Li, Xuyang Zhou, Sida Gao, Guancheng Huang, Ziling Qiao, Zhengyu Wu, Yutong Li, Shutian Liu, Zhengjun Liu","doi":"10.1002/lpor.202502003","DOIUrl":null,"url":null,"abstract":"Lensless on-chip microscopy (LOCM) is a promising technique for high-throughput, label-free imaging. However, its practical implementation remains constrained by sensitivity to variations in sample-sensor distance and cumulative noise during reconstruction. Existing autofocus and phase retrieval algorithms fail when dealing with non-planar samples and environmental disturbances. A wide-field, artifact-suppressed lensless imaging framework with natural support constraints is proposed, which integrates segment-dependent lateral registration, feature-agnostic autofocus, and multi-target separable phase retrieval. The proposed complex field correction scheme effectively addresses diffraction scale distortion and sensor trajectory deviations while mitigating the dependence of autofocus on sample-specific image features. The phase retrieval process is further enhanced via a multi-objective stochastic gradient descent algorithm, which enables effective noise separation without compromising resolution. Experimental validations with diverse samples demonstrate significant performance improvements, achieving pixel-super-resolved imaging with a full field of view (FOV) of 28.6 <span data-altimg=\"/cms/asset/d6ccbb5e-44c6-4c61-aea7-186ef0d4d69d/lpor70488-math-0001.png\"></span><math altimg=\"urn:x-wiley:18638880:media:lpor70488:lpor70488-math-0001\" display=\"inline\" location=\"graphic/lpor70488-math-0001.png\">\n<semantics>\n<msup>\n<mi>mm</mi>\n<mn>2</mn>\n</msup>\n${\\rm mm}^2$</annotation>\n</semantics></math>, an imaging depth exceeding 80 <span data-altimg=\"/cms/asset/2df1ba6f-cc2b-404e-b5ae-fafea58376f0/lpor70488-math-0002.png\"></span><math altimg=\"urn:x-wiley:18638880:media:lpor70488:lpor70488-math-0002\" display=\"inline\" location=\"graphic/lpor70488-math-0002.png\">\n<semantics>\n<mrow>\n<mi>μ</mi>\n<mi mathvariant=\"normal\">m</mi>\n</mrow>\n$\\umu{\\rm m}$</annotation>\n</semantics></math>, and a half-pitch resolution of 775 nm, corresponding to a 2.15-fold improvement in spatial resolution beyond the Nyquist–Shannon sampling limit. Furthermore, the proposed method demonstrates strong compatibility with coherent diffraction imaging (CDI), highlighting its broader applicability. The proposed method improves the versatility of lensless microscopy, eliminates reliance on stringent calibration, and provides a robust solution for high-throughput computational imaging.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"70 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wide-Field, Artifact-Suppressed Lensless Microscopy Via Feature-Agnostic Autofocus and Multi-Target Separable Phase Retrieval\",\"authors\":\"Ziyang Li, Xuyang Zhou, Sida Gao, Guancheng Huang, Ziling Qiao, Zhengyu Wu, Yutong Li, Shutian Liu, Zhengjun Liu\",\"doi\":\"10.1002/lpor.202502003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lensless on-chip microscopy (LOCM) is a promising technique for high-throughput, label-free imaging. However, its practical implementation remains constrained by sensitivity to variations in sample-sensor distance and cumulative noise during reconstruction. Existing autofocus and phase retrieval algorithms fail when dealing with non-planar samples and environmental disturbances. A wide-field, artifact-suppressed lensless imaging framework with natural support constraints is proposed, which integrates segment-dependent lateral registration, feature-agnostic autofocus, and multi-target separable phase retrieval. The proposed complex field correction scheme effectively addresses diffraction scale distortion and sensor trajectory deviations while mitigating the dependence of autofocus on sample-specific image features. The phase retrieval process is further enhanced via a multi-objective stochastic gradient descent algorithm, which enables effective noise separation without compromising resolution. Experimental validations with diverse samples demonstrate significant performance improvements, achieving pixel-super-resolved imaging with a full field of view (FOV) of 28.6 <span data-altimg=\\\"/cms/asset/d6ccbb5e-44c6-4c61-aea7-186ef0d4d69d/lpor70488-math-0001.png\\\"></span><math altimg=\\\"urn:x-wiley:18638880:media:lpor70488:lpor70488-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/lpor70488-math-0001.png\\\">\\n<semantics>\\n<msup>\\n<mi>mm</mi>\\n<mn>2</mn>\\n</msup>\\n${\\\\rm mm}^2$</annotation>\\n</semantics></math>, an imaging depth exceeding 80 <span data-altimg=\\\"/cms/asset/2df1ba6f-cc2b-404e-b5ae-fafea58376f0/lpor70488-math-0002.png\\\"></span><math altimg=\\\"urn:x-wiley:18638880:media:lpor70488:lpor70488-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/lpor70488-math-0002.png\\\">\\n<semantics>\\n<mrow>\\n<mi>μ</mi>\\n<mi mathvariant=\\\"normal\\\">m</mi>\\n</mrow>\\n$\\\\umu{\\\\rm m}$</annotation>\\n</semantics></math>, and a half-pitch resolution of 775 nm, corresponding to a 2.15-fold improvement in spatial resolution beyond the Nyquist–Shannon sampling limit. Furthermore, the proposed method demonstrates strong compatibility with coherent diffraction imaging (CDI), highlighting its broader applicability. The proposed method improves the versatility of lensless microscopy, eliminates reliance on stringent calibration, and provides a robust solution for high-throughput computational imaging.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202502003\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202502003","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

无透镜片上显微镜(LOCM)是一种很有前途的高通量、无标签成像技术。然而,其实际实施仍然受到采样传感器距离变化的敏感性和重建过程中的累积噪声的限制。现有的自动对焦和相位恢复算法在处理非平面样本和环境干扰时存在缺陷。提出了一种具有自然支持约束的宽视场、抑制伪影的无透镜成像框架,该框架集成了依赖于图像片段的横向配准、特征不确定的自动对焦和多目标可分离相位检索。提出的复杂视场校正方案有效地解决了衍射尺度畸变和传感器轨迹偏差问题,同时减轻了自动对焦对样品特定图像特征的依赖。相位恢复过程通过多目标随机梯度下降算法进一步增强,在不影响分辨率的情况下实现有效的噪声分离。不同样品的实验验证显示了显着的性能改进,实现了全视场(FOV)为28.6 mm2${\rm mm}^2$的像素超分辨成像,成像深度超过80 μm$\umu{\rm m}$,半间距分辨率为775 nm,相当于在Nyquist-Shannon采样极限之外的空间分辨率提高了2.15倍。此外,该方法与相干衍射成像(CDI)具有较强的兼容性,突出了其广泛的适用性。提出的方法提高了无透镜显微镜的通用性,消除了对严格校准的依赖,并为高通量计算成像提供了一个强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wide-Field, Artifact-Suppressed Lensless Microscopy Via Feature-Agnostic Autofocus and Multi-Target Separable Phase Retrieval

Wide-Field, Artifact-Suppressed Lensless Microscopy Via Feature-Agnostic Autofocus and Multi-Target Separable Phase Retrieval
Lensless on-chip microscopy (LOCM) is a promising technique for high-throughput, label-free imaging. However, its practical implementation remains constrained by sensitivity to variations in sample-sensor distance and cumulative noise during reconstruction. Existing autofocus and phase retrieval algorithms fail when dealing with non-planar samples and environmental disturbances. A wide-field, artifact-suppressed lensless imaging framework with natural support constraints is proposed, which integrates segment-dependent lateral registration, feature-agnostic autofocus, and multi-target separable phase retrieval. The proposed complex field correction scheme effectively addresses diffraction scale distortion and sensor trajectory deviations while mitigating the dependence of autofocus on sample-specific image features. The phase retrieval process is further enhanced via a multi-objective stochastic gradient descent algorithm, which enables effective noise separation without compromising resolution. Experimental validations with diverse samples demonstrate significant performance improvements, achieving pixel-super-resolved imaging with a full field of view (FOV) of 28.6 mm 2 ${\rm mm}^2$ , an imaging depth exceeding 80 μ m $\umu{\rm m}$ , and a half-pitch resolution of 775 nm, corresponding to a 2.15-fold improvement in spatial resolution beyond the Nyquist–Shannon sampling limit. Furthermore, the proposed method demonstrates strong compatibility with coherent diffraction imaging (CDI), highlighting its broader applicability. The proposed method improves the versatility of lensless microscopy, eliminates reliance on stringent calibration, and provides a robust solution for high-throughput computational imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信