{"title":"Rh - Ru双位点与界面氧的耦合使MoSe2具有高效的氨电合成能力","authors":"Zhaoyan Luo, Lijiao Shi, Yinnan Qian, Zijie Yang, Jiale Li, Lei Zhang, Qianling Zhang, Chuanxin He, Xiangzhong Ren","doi":"10.1002/adfm.202513568","DOIUrl":null,"url":null,"abstract":"The electrochemical nitritereduction reaction (NO<jats:sub>2</jats:sub>RR) to ammonia (NH<jats:sub>3</jats:sub>) is an intricate multielectron coupled proton transfer process, involving the adsorption and deoxygenation of NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup> to form intermediates (*NO), followed by the protonation of *NO to generate NH<jats:sub>3</jats:sub>. Tandem catalysis is a promising approach for enhancing the NO<jats:sub>2</jats:sub>RR and suppressing side effects; however, it is still challenged by the lack of well‐designed catalysts to drive this catalytic process. Herein, a catalyst is introduced, featuring Rh−Ru atomic‐pair dual sites that couple with interfacial oxygen‐containing species confined within a MoSe<jats:sub>2</jats:sub> lattice (RhRu‐MoSe<jats:sub>2‐x</jats:sub>O<jats:sub>y</jats:sub>), enabling the unprecedented selective conversion of NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup> to NH<jats:sub>3</jats:sub> under a low potential. Systematic experimental and computational studies reveal that the construction of Rh‐Ru sites married with adjacent oxygen‐containing groups can achieve the synchronous dispatch of water activation and hydrogenation of NO<jats:sub>2</jats:sub>. Moreover, the nitrite reduction on RhRu‐MoSe<jats:sub>2‐x</jats:sub>O<jats:sub>y</jats:sub> preferably proceeds via the NHO* pathway (NO*→NHO*), effectively circumventing the high energy barrier associated with the O‐side pathway (NO*→NOH*). Consequently, such a tandem system holds superior performance for robust NH<jats:sub>3</jats:sub> electrosynthesis at a relatively low potential, achieving a high NH<jats:sub>3</jats:sub> Faradaic efficiency of 93.0% at −0.2 V (vs RHE) and an exceptional NH<jats:sub>3</jats:sub> production rate of 9.2725 mmol h<jats:sup>−1</jats:sup> mg<jats:sub>cat</jats:sub><jats:sup>−1</jats:sup> at –0.4 V. Furthermore, the resulting catalysts attain ultra‐low overpotentials in a membrane electrode assembly (MEA) electrolyzer, featuring cell voltages of 2.1 V at current densities of 400 mA cm<jats:sup>−2</jats:sup> and stable operation under industrial conditions for 200 min.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"3 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Coupling of Rh‐Ru Dual Sites with Interfacial Oxygen Endows MoSe2 with Efficient Ammonia Electrosynthesis\",\"authors\":\"Zhaoyan Luo, Lijiao Shi, Yinnan Qian, Zijie Yang, Jiale Li, Lei Zhang, Qianling Zhang, Chuanxin He, Xiangzhong Ren\",\"doi\":\"10.1002/adfm.202513568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical nitritereduction reaction (NO<jats:sub>2</jats:sub>RR) to ammonia (NH<jats:sub>3</jats:sub>) is an intricate multielectron coupled proton transfer process, involving the adsorption and deoxygenation of NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup> to form intermediates (*NO), followed by the protonation of *NO to generate NH<jats:sub>3</jats:sub>. Tandem catalysis is a promising approach for enhancing the NO<jats:sub>2</jats:sub>RR and suppressing side effects; however, it is still challenged by the lack of well‐designed catalysts to drive this catalytic process. Herein, a catalyst is introduced, featuring Rh−Ru atomic‐pair dual sites that couple with interfacial oxygen‐containing species confined within a MoSe<jats:sub>2</jats:sub> lattice (RhRu‐MoSe<jats:sub>2‐x</jats:sub>O<jats:sub>y</jats:sub>), enabling the unprecedented selective conversion of NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup> to NH<jats:sub>3</jats:sub> under a low potential. Systematic experimental and computational studies reveal that the construction of Rh‐Ru sites married with adjacent oxygen‐containing groups can achieve the synchronous dispatch of water activation and hydrogenation of NO<jats:sub>2</jats:sub>. Moreover, the nitrite reduction on RhRu‐MoSe<jats:sub>2‐x</jats:sub>O<jats:sub>y</jats:sub> preferably proceeds via the NHO* pathway (NO*→NHO*), effectively circumventing the high energy barrier associated with the O‐side pathway (NO*→NOH*). Consequently, such a tandem system holds superior performance for robust NH<jats:sub>3</jats:sub> electrosynthesis at a relatively low potential, achieving a high NH<jats:sub>3</jats:sub> Faradaic efficiency of 93.0% at −0.2 V (vs RHE) and an exceptional NH<jats:sub>3</jats:sub> production rate of 9.2725 mmol h<jats:sup>−1</jats:sup> mg<jats:sub>cat</jats:sub><jats:sup>−1</jats:sup> at –0.4 V. Furthermore, the resulting catalysts attain ultra‐low overpotentials in a membrane electrode assembly (MEA) electrolyzer, featuring cell voltages of 2.1 V at current densities of 400 mA cm<jats:sup>−2</jats:sup> and stable operation under industrial conditions for 200 min.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202513568\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202513568","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
电化学硝酸还原反应(NO2RR)生成氨(NH3)是一个复杂的多电子耦合质子转移过程,涉及NO2 -吸附和脱氧生成中间体(*NO),然后*NO质子化生成NH3。串联催化是一种很有前途的提高NO2RR和抑制副作用的方法;然而,由于缺乏设计良好的催化剂来驱动这一催化过程,它仍然受到挑战。本文介绍了一种催化剂,该催化剂具有Rh - Ru原子对双位点,与限制在MoSe2晶格内的界面含氧物质(RhRu‐MoSe2‐xOy)偶联,使NO2−在低电位下选择性转化为NH3。系统的实验和计算研究表明,构建与相邻含氧基团结合的Rh - Ru位点可以实现水活化和NO2加氢的同步调度。此外,RhRu‐MoSe2‐xOy上的亚硝酸盐还原更倾向于通过NHO*途径(NO*→NHO*)进行,有效地绕过了与O侧途径(NO*→NOH*)相关的高能垒。因此,这种串联体系在相对低电位下具有优异的稳定NH3电合成性能,在- 0.2 V(相对于RHE)下,NH3的法拉第效率高达93.0%,在-0.4 V下,NH3的产率高达9.2725 mmol h - 1 mgcat - 1。此外,所得到的催化剂在膜电极组件(MEA)电解槽中获得了超低过电位,在电流密度为400 mA cm - 2时具有2.1 V的电池电压,并且在工业条件下稳定运行200分钟。
The Coupling of Rh‐Ru Dual Sites with Interfacial Oxygen Endows MoSe2 with Efficient Ammonia Electrosynthesis
The electrochemical nitritereduction reaction (NO2RR) to ammonia (NH3) is an intricate multielectron coupled proton transfer process, involving the adsorption and deoxygenation of NO2− to form intermediates (*NO), followed by the protonation of *NO to generate NH3. Tandem catalysis is a promising approach for enhancing the NO2RR and suppressing side effects; however, it is still challenged by the lack of well‐designed catalysts to drive this catalytic process. Herein, a catalyst is introduced, featuring Rh−Ru atomic‐pair dual sites that couple with interfacial oxygen‐containing species confined within a MoSe2 lattice (RhRu‐MoSe2‐xOy), enabling the unprecedented selective conversion of NO2− to NH3 under a low potential. Systematic experimental and computational studies reveal that the construction of Rh‐Ru sites married with adjacent oxygen‐containing groups can achieve the synchronous dispatch of water activation and hydrogenation of NO2. Moreover, the nitrite reduction on RhRu‐MoSe2‐xOy preferably proceeds via the NHO* pathway (NO*→NHO*), effectively circumventing the high energy barrier associated with the O‐side pathway (NO*→NOH*). Consequently, such a tandem system holds superior performance for robust NH3 electrosynthesis at a relatively low potential, achieving a high NH3 Faradaic efficiency of 93.0% at −0.2 V (vs RHE) and an exceptional NH3 production rate of 9.2725 mmol h−1 mgcat−1 at –0.4 V. Furthermore, the resulting catalysts attain ultra‐low overpotentials in a membrane electrode assembly (MEA) electrolyzer, featuring cell voltages of 2.1 V at current densities of 400 mA cm−2 and stable operation under industrial conditions for 200 min.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.