{"title":"阳离子工程铁卟啉促进亚硝酸盐电催化还原为氨","authors":"Hai Sun, Wenwen Zhang, Yuanyuan Qi, Qiang Xu, Jingwei Han, Jiahui Wu, Jun‐Sheng Qin, Heng Rao","doi":"10.1002/anie.202513890","DOIUrl":null,"url":null,"abstract":"Excessive discharge of nitrite (NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup>) into the natural environment disrupts the nitrogen cycle and poses significant health risks. Metalloporphyrins are recognized as ideal electrocatalysts owing to their well‐defined M─N<jats:sub>4</jats:sub> coordination and tunable structural properties. In this study, iron 4,4′,4′′,4′″‐(porphyrin‐5,10,15,20‐tetrayl)tetrakis(N, N‐dimethylaniline) (FeDMA) and iron 4,4′,4′′,4′″‐(porphyrin‐5,10,15,20‐tetrayl)tetrakis(N, N, N‐trimethylbenzenaminium) (FeTMA) were synthesized from iron tetraphenylporphyrin (FeTPP) by introducing electron‐donating dimethylammonio and electron‐withdrawing trimethylammonio substituents. We systematically investigated the influence of substituent effects on the catalytic activity of iron porphyrins for the nitrite reduction reaction (NO<jats:sub>2</jats:sub>RR). FeTMA achieved exceptional performance, maintaining >90% Faradaic efficiency (FE) for NH<jats:sub>3</jats:sub> over a broad potential range (−1.1 to −1.5 V versus Ag/AgCl) and a peak NH<jats:sub>3</jats:sub> yield rate of 458 ± 4 µmol h<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup>. The NH<jats:sub>3</jats:sub> yield rate was 1.9 and 1.5 times that of FeDMA and FeTPP, respectively. Homogeneous electrochemical and spectroscopic analyses identified Fe<jats:sup>I</jats:sup> as the active center for the NO<jats:sub>2</jats:sub>RR. Theoretical simulations and experimental results revealed that trimethylammonio cations enhance NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup> adsorption and facilitate NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup> desorption through Coulombic interactions, ultimately enhancing the catalytic activity. This study demonstrates that cation‐engineered metalloporphyrins are a robust strategy for NO<jats:sub>2</jats:sub>RR, providing valuable guidance for ammonia synthesis.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cation‐Engineered Iron Porphyrin Boosting Electrocatalytic Reduction of Nitrite to Ammonia\",\"authors\":\"Hai Sun, Wenwen Zhang, Yuanyuan Qi, Qiang Xu, Jingwei Han, Jiahui Wu, Jun‐Sheng Qin, Heng Rao\",\"doi\":\"10.1002/anie.202513890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excessive discharge of nitrite (NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup>) into the natural environment disrupts the nitrogen cycle and poses significant health risks. Metalloporphyrins are recognized as ideal electrocatalysts owing to their well‐defined M─N<jats:sub>4</jats:sub> coordination and tunable structural properties. In this study, iron 4,4′,4′′,4′″‐(porphyrin‐5,10,15,20‐tetrayl)tetrakis(N, N‐dimethylaniline) (FeDMA) and iron 4,4′,4′′,4′″‐(porphyrin‐5,10,15,20‐tetrayl)tetrakis(N, N, N‐trimethylbenzenaminium) (FeTMA) were synthesized from iron tetraphenylporphyrin (FeTPP) by introducing electron‐donating dimethylammonio and electron‐withdrawing trimethylammonio substituents. We systematically investigated the influence of substituent effects on the catalytic activity of iron porphyrins for the nitrite reduction reaction (NO<jats:sub>2</jats:sub>RR). FeTMA achieved exceptional performance, maintaining >90% Faradaic efficiency (FE) for NH<jats:sub>3</jats:sub> over a broad potential range (−1.1 to −1.5 V versus Ag/AgCl) and a peak NH<jats:sub>3</jats:sub> yield rate of 458 ± 4 µmol h<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup>. The NH<jats:sub>3</jats:sub> yield rate was 1.9 and 1.5 times that of FeDMA and FeTPP, respectively. Homogeneous electrochemical and spectroscopic analyses identified Fe<jats:sup>I</jats:sup> as the active center for the NO<jats:sub>2</jats:sub>RR. Theoretical simulations and experimental results revealed that trimethylammonio cations enhance NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup> adsorption and facilitate NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup> desorption through Coulombic interactions, ultimately enhancing the catalytic activity. This study demonstrates that cation‐engineered metalloporphyrins are a robust strategy for NO<jats:sub>2</jats:sub>RR, providing valuable guidance for ammonia synthesis.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202513890\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202513890","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
亚硝酸盐(NO2−)过量排放到自然环境中会破坏氮循环,并造成重大的健康风险。金属卟啉由于其明确的M─N4配位和可调的结构性质而被认为是理想的电催化剂。本研究以四苯基卟啉铁(FeTPP)为原料,通过引入供电子二甲胺和吸电子三甲胺取代基,合成了4,4′,4′,4′″‐(卟啉‐5,10,15,20‐四基)四基(N, N‐二甲基苯胺)铁(FeDMA)和4,4′,4′,4′″‐(卟啉‐5,10,15,20‐四基)四基(N, N, N‐三甲基苯胺)铁(FeTMA)。系统地研究了取代基效应对铁卟啉在亚硝酸盐还原反应(NO2RR)中催化活性的影响。FeTMA取得了优异的性能,在较宽的电位范围内(- 1.1至- 1.5 V vs Ag/AgCl)保持了90%的NH3法拉第效率(FE), NH3的峰产率为458±4µmol h−1 cm−2。NH3的收益率分别是FeDMA和FeTPP的1.9倍和1.5倍。均相电化学和光谱分析表明FeI是NO2RR的活性中心。理论模拟和实验结果表明,三甲基胺离子通过库仑相互作用增强NO2 -吸附,促进NH4+解吸,最终提高催化活性。该研究表明,阳离子工程金属卟啉是一种强大的NO2RR策略,为氨合成提供了有价值的指导。
Cation‐Engineered Iron Porphyrin Boosting Electrocatalytic Reduction of Nitrite to Ammonia
Excessive discharge of nitrite (NO2−) into the natural environment disrupts the nitrogen cycle and poses significant health risks. Metalloporphyrins are recognized as ideal electrocatalysts owing to their well‐defined M─N4 coordination and tunable structural properties. In this study, iron 4,4′,4′′,4′″‐(porphyrin‐5,10,15,20‐tetrayl)tetrakis(N, N‐dimethylaniline) (FeDMA) and iron 4,4′,4′′,4′″‐(porphyrin‐5,10,15,20‐tetrayl)tetrakis(N, N, N‐trimethylbenzenaminium) (FeTMA) were synthesized from iron tetraphenylporphyrin (FeTPP) by introducing electron‐donating dimethylammonio and electron‐withdrawing trimethylammonio substituents. We systematically investigated the influence of substituent effects on the catalytic activity of iron porphyrins for the nitrite reduction reaction (NO2RR). FeTMA achieved exceptional performance, maintaining >90% Faradaic efficiency (FE) for NH3 over a broad potential range (−1.1 to −1.5 V versus Ag/AgCl) and a peak NH3 yield rate of 458 ± 4 µmol h−1 cm−2. The NH3 yield rate was 1.9 and 1.5 times that of FeDMA and FeTPP, respectively. Homogeneous electrochemical and spectroscopic analyses identified FeI as the active center for the NO2RR. Theoretical simulations and experimental results revealed that trimethylammonio cations enhance NO2− adsorption and facilitate NH4+ desorption through Coulombic interactions, ultimately enhancing the catalytic activity. This study demonstrates that cation‐engineered metalloporphyrins are a robust strategy for NO2RR, providing valuable guidance for ammonia synthesis.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.