中美跨市场波动溢出效应:基于样本外预测的DCC-EGARCH-t-Copula框架

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-10-17 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0333794
Jin Zeng, Jingwen Wu
{"title":"中美跨市场波动溢出效应:基于样本外预测的DCC-EGARCH-t-Copula框架","authors":"Jin Zeng, Jingwen Wu","doi":"10.1371/journal.pone.0333794","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines volatility spillovers between Chinese and U.S. equity markets by developing a comprehensive framework that captures asymmetric volatility, extreme co-movements, and dynamic correlations. We propose an integrated methodology combining EGARCH models with Student-t innovations, a Student-t copula, and a Dynamic Conditional Correlation (DCC) structure. Using daily returns of the Hang Seng Index (HSI) and the S&P 500, our analysis reveals three principal findings. First, the EGARCH model effectively captures the pronounced leverage effect and fat-tailed distributions characteristic of both markets. Second, the Student-t copula demonstrates the best fit among competing specifications, indicating significant symmetric tail dependence between the two markets. Third, time-varying correlations exhibit high persistence, rising during crises yet remaining within a moderate range. Crucially, out-of-sample forecasting shows that our unified framework achieves superior predictive accuracy relative to standard benchmarks. These findings provide valuable insights for investors designing hedging strategies, exchanges determining margin requirements, and policymakers monitoring financial contagion. Our approach offers a robust tool for analyzing volatility transmission between developed and emerging markets.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 10","pages":"e0333794"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533925/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cross-market volatility spillovers between China and the United States: A DCC-EGARCH-t-Copula framework with out-of-sample forecasting.\",\"authors\":\"Jin Zeng, Jingwen Wu\",\"doi\":\"10.1371/journal.pone.0333794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study examines volatility spillovers between Chinese and U.S. equity markets by developing a comprehensive framework that captures asymmetric volatility, extreme co-movements, and dynamic correlations. We propose an integrated methodology combining EGARCH models with Student-t innovations, a Student-t copula, and a Dynamic Conditional Correlation (DCC) structure. Using daily returns of the Hang Seng Index (HSI) and the S&P 500, our analysis reveals three principal findings. First, the EGARCH model effectively captures the pronounced leverage effect and fat-tailed distributions characteristic of both markets. Second, the Student-t copula demonstrates the best fit among competing specifications, indicating significant symmetric tail dependence between the two markets. Third, time-varying correlations exhibit high persistence, rising during crises yet remaining within a moderate range. Crucially, out-of-sample forecasting shows that our unified framework achieves superior predictive accuracy relative to standard benchmarks. These findings provide valuable insights for investors designing hedging strategies, exchanges determining margin requirements, and policymakers monitoring financial contagion. Our approach offers a robust tool for analyzing volatility transmission between developed and emerging markets.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 10\",\"pages\":\"e0333794\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533925/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0333794\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0333794","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过建立一个全面的框架来考察中美股票市场之间的波动溢出效应,该框架捕捉了不对称波动、极端协同运动和动态相关性。我们提出了一种将EGARCH模型与Student-t创新、Student-t copula和动态条件相关(DCC)结构相结合的集成方法。利用恒生指数(HSI)和标准普尔500指数的日回报率,我们的分析揭示了三个主要发现。首先,EGARCH模型有效地捕捉了两个市场明显的杠杆效应和肥尾分布特征。其次,Student-t copula证明了竞争规格之间的最佳拟合,表明两个市场之间存在显著的对称尾部依赖。第三,时变相关性表现出高度的持久性,在危机期间上升,但仍保持在适度的范围内。至关重要的是,样本外预测表明,相对于标准基准,我们的统一框架实现了更高的预测精度。这些发现为投资者设计对冲策略、交易所确定保证金要求以及政策制定者监控金融传染提供了有价值的见解。我们的方法为分析发达市场和新兴市场之间的波动传导提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-market volatility spillovers between China and the United States: A DCC-EGARCH-t-Copula framework with out-of-sample forecasting.

This study examines volatility spillovers between Chinese and U.S. equity markets by developing a comprehensive framework that captures asymmetric volatility, extreme co-movements, and dynamic correlations. We propose an integrated methodology combining EGARCH models with Student-t innovations, a Student-t copula, and a Dynamic Conditional Correlation (DCC) structure. Using daily returns of the Hang Seng Index (HSI) and the S&P 500, our analysis reveals three principal findings. First, the EGARCH model effectively captures the pronounced leverage effect and fat-tailed distributions characteristic of both markets. Second, the Student-t copula demonstrates the best fit among competing specifications, indicating significant symmetric tail dependence between the two markets. Third, time-varying correlations exhibit high persistence, rising during crises yet remaining within a moderate range. Crucially, out-of-sample forecasting shows that our unified framework achieves superior predictive accuracy relative to standard benchmarks. These findings provide valuable insights for investors designing hedging strategies, exchanges determining margin requirements, and policymakers monitoring financial contagion. Our approach offers a robust tool for analyzing volatility transmission between developed and emerging markets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信