Wakako Nagase, Kazuharu Harada, Yujin Kudo, Jun Matsubayashi, Ikki Takada, Jinho Park, Kotaro Murakami, Tatsuo Ohira, Toshitaka Nagao, Masataka Taguri, Norihiko Ikeda
{"title":"人工智能驱动的三维CT成像预测模型提高早期肺癌内脏性胸膜侵犯的术前检测。","authors":"Wakako Nagase, Kazuharu Harada, Yujin Kudo, Jun Matsubayashi, Ikki Takada, Jinho Park, Kotaro Murakami, Tatsuo Ohira, Toshitaka Nagao, Masataka Taguri, Norihiko Ikeda","doi":"10.1371/journal.pone.0332956","DOIUrl":null,"url":null,"abstract":"<p><p>Visceral pleural invasion (VPI) is a critical prognostic factor in early-stage non-small-cell lung cancer (NSCLC), significantly affecting patient outcomes. Conventional computed tomography (CT) often fails to diagnose VPI accurately. This retrospective case-control study evaluated the efficacy of artificial intelligence (AI)-assisted three-dimensional (3D) CT imaging for predicting VPI in 556 patients with clinical stage 0-I NSCLC who underwent complete surgical resection. Patients with tumors > 4 cm, those not adjacent to the pleural surface, or with unsuitable CT scans were excluded. Radiological features were analyzed using AI software capable of 3D imaging and characterization of pulmonary nodules (Synapse Vincent System, Fujifilm Corporation, Japan). The dataset was divided into training (n = 408) and test (n = 148) cohorts. Stability selection identified \"Solid nodule\" and \"Pleural contact\" as key predictors. Logistic regression analysis using these features developed prediction models for VPI. Receiver operating characteristic analysis showed that the area under the curve of the derived model was 0.831 and 0.782 in the training and test cohorts, respectively. The sensitivity and specificity were 0.739 and 0.657 in the test cohorts. These findings suggest that AI-enhanced 3D CT imaging significantly improved the preoperative prediction of VPI in NSCLC, supporting AI's integration into diagnostic processes.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 10","pages":"e0332956"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533904/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-driven 3D CT imaging prediction model for improving preoperative detection of visceral pleural invasion in early-stage lung cancer.\",\"authors\":\"Wakako Nagase, Kazuharu Harada, Yujin Kudo, Jun Matsubayashi, Ikki Takada, Jinho Park, Kotaro Murakami, Tatsuo Ohira, Toshitaka Nagao, Masataka Taguri, Norihiko Ikeda\",\"doi\":\"10.1371/journal.pone.0332956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visceral pleural invasion (VPI) is a critical prognostic factor in early-stage non-small-cell lung cancer (NSCLC), significantly affecting patient outcomes. Conventional computed tomography (CT) often fails to diagnose VPI accurately. This retrospective case-control study evaluated the efficacy of artificial intelligence (AI)-assisted three-dimensional (3D) CT imaging for predicting VPI in 556 patients with clinical stage 0-I NSCLC who underwent complete surgical resection. Patients with tumors > 4 cm, those not adjacent to the pleural surface, or with unsuitable CT scans were excluded. Radiological features were analyzed using AI software capable of 3D imaging and characterization of pulmonary nodules (Synapse Vincent System, Fujifilm Corporation, Japan). The dataset was divided into training (n = 408) and test (n = 148) cohorts. Stability selection identified \\\"Solid nodule\\\" and \\\"Pleural contact\\\" as key predictors. Logistic regression analysis using these features developed prediction models for VPI. Receiver operating characteristic analysis showed that the area under the curve of the derived model was 0.831 and 0.782 in the training and test cohorts, respectively. The sensitivity and specificity were 0.739 and 0.657 in the test cohorts. These findings suggest that AI-enhanced 3D CT imaging significantly improved the preoperative prediction of VPI in NSCLC, supporting AI's integration into diagnostic processes.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 10\",\"pages\":\"e0332956\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533904/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0332956\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0332956","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
AI-driven 3D CT imaging prediction model for improving preoperative detection of visceral pleural invasion in early-stage lung cancer.
Visceral pleural invasion (VPI) is a critical prognostic factor in early-stage non-small-cell lung cancer (NSCLC), significantly affecting patient outcomes. Conventional computed tomography (CT) often fails to diagnose VPI accurately. This retrospective case-control study evaluated the efficacy of artificial intelligence (AI)-assisted three-dimensional (3D) CT imaging for predicting VPI in 556 patients with clinical stage 0-I NSCLC who underwent complete surgical resection. Patients with tumors > 4 cm, those not adjacent to the pleural surface, or with unsuitable CT scans were excluded. Radiological features were analyzed using AI software capable of 3D imaging and characterization of pulmonary nodules (Synapse Vincent System, Fujifilm Corporation, Japan). The dataset was divided into training (n = 408) and test (n = 148) cohorts. Stability selection identified "Solid nodule" and "Pleural contact" as key predictors. Logistic regression analysis using these features developed prediction models for VPI. Receiver operating characteristic analysis showed that the area under the curve of the derived model was 0.831 and 0.782 in the training and test cohorts, respectively. The sensitivity and specificity were 0.739 and 0.657 in the test cohorts. These findings suggest that AI-enhanced 3D CT imaging significantly improved the preoperative prediction of VPI in NSCLC, supporting AI's integration into diagnostic processes.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage