Chinchila Chandran, Manoj Mohan, Elmuez Dawi, Marlinda Ab Rahman, Norazriena Yusoff, Rafat M Ibrahim, Meyyarappallil S Sreekala, Sabu Thomas
{"title":"生物炭衍生碳纳米材料在电催化水裂解制氢中的应用。","authors":"Chinchila Chandran, Manoj Mohan, Elmuez Dawi, Marlinda Ab Rahman, Norazriena Yusoff, Rafat M Ibrahim, Meyyarappallil S Sreekala, Sabu Thomas","doi":"10.1002/tcr.202500093","DOIUrl":null,"url":null,"abstract":"<p><p>Due to its zero carbon emissions, hydrogen has emerged as a promising clean energy source. By utilizing water electrolysis for hydrogen production, carbon neutralization can be advanced technologically and practically. Developing durable, cost-effective electrocatalysts with low overpotentials is essential for electrochemical water splitting. In order to produce hydrogen efficiently, it is important to choose materials that are most suitable for converting energy into hydrogen. Due to their tunable structure, expansive surface area, and outstanding electrocatalytic properties, carbon nanomaterials are becoming increasingly important in this field. Furthermore, their high conductivity and catalytic potential make them promising hydrogen energy candidates. As a precursor material, biochar can be used to produce carbon nanomaterials in an innovative manner. Carbon nanomaterials have been synthesized from biochar in a variety of ways, each producing a different structure. This review discusses biochar production and biochar nanostructures derived from biochar, including carbon dots, carbon tubes, nanofibers, nanosheets, and nanoflakes, along with their energy conversion efficiency and structural tunability. Furthermore, this review investigates recent advances in electrochemical water splitting. It places a particular emphasis on carbon nanomaterials derived from biochar as catalysts. Its objective is to provide valuable insight into the advancement of sustainable hydrogen energy solutions.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e2500093"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar-Derived Carbon Nanomaterials in Electrocatalytic Water Splitting for Hydrogen Production.\",\"authors\":\"Chinchila Chandran, Manoj Mohan, Elmuez Dawi, Marlinda Ab Rahman, Norazriena Yusoff, Rafat M Ibrahim, Meyyarappallil S Sreekala, Sabu Thomas\",\"doi\":\"10.1002/tcr.202500093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to its zero carbon emissions, hydrogen has emerged as a promising clean energy source. By utilizing water electrolysis for hydrogen production, carbon neutralization can be advanced technologically and practically. Developing durable, cost-effective electrocatalysts with low overpotentials is essential for electrochemical water splitting. In order to produce hydrogen efficiently, it is important to choose materials that are most suitable for converting energy into hydrogen. Due to their tunable structure, expansive surface area, and outstanding electrocatalytic properties, carbon nanomaterials are becoming increasingly important in this field. Furthermore, their high conductivity and catalytic potential make them promising hydrogen energy candidates. As a precursor material, biochar can be used to produce carbon nanomaterials in an innovative manner. Carbon nanomaterials have been synthesized from biochar in a variety of ways, each producing a different structure. This review discusses biochar production and biochar nanostructures derived from biochar, including carbon dots, carbon tubes, nanofibers, nanosheets, and nanoflakes, along with their energy conversion efficiency and structural tunability. Furthermore, this review investigates recent advances in electrochemical water splitting. It places a particular emphasis on carbon nanomaterials derived from biochar as catalysts. Its objective is to provide valuable insight into the advancement of sustainable hydrogen energy solutions.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":\" \",\"pages\":\"e2500093\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/tcr.202500093\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202500093","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biochar-Derived Carbon Nanomaterials in Electrocatalytic Water Splitting for Hydrogen Production.
Due to its zero carbon emissions, hydrogen has emerged as a promising clean energy source. By utilizing water electrolysis for hydrogen production, carbon neutralization can be advanced technologically and practically. Developing durable, cost-effective electrocatalysts with low overpotentials is essential for electrochemical water splitting. In order to produce hydrogen efficiently, it is important to choose materials that are most suitable for converting energy into hydrogen. Due to their tunable structure, expansive surface area, and outstanding electrocatalytic properties, carbon nanomaterials are becoming increasingly important in this field. Furthermore, their high conductivity and catalytic potential make them promising hydrogen energy candidates. As a precursor material, biochar can be used to produce carbon nanomaterials in an innovative manner. Carbon nanomaterials have been synthesized from biochar in a variety of ways, each producing a different structure. This review discusses biochar production and biochar nanostructures derived from biochar, including carbon dots, carbon tubes, nanofibers, nanosheets, and nanoflakes, along with their energy conversion efficiency and structural tunability. Furthermore, this review investigates recent advances in electrochemical water splitting. It places a particular emphasis on carbon nanomaterials derived from biochar as catalysts. Its objective is to provide valuable insight into the advancement of sustainable hydrogen energy solutions.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.