太赫兹电感-电容谐振超材料光谱法精确无损测定硅晶片界面氧化层厚度

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Heena Khand, , , Rudrarup Sengupta*, , and , Gabby Sarusi, 
{"title":"太赫兹电感-电容谐振超材料光谱法精确无损测定硅晶片界面氧化层厚度","authors":"Heena Khand,&nbsp;, ,&nbsp;Rudrarup Sengupta*,&nbsp;, and ,&nbsp;Gabby Sarusi,&nbsp;","doi":"10.1021/acsanm.5c03806","DOIUrl":null,"url":null,"abstract":"<p >We present a nondestructive technique to accurately measure interfacial oxide layer thickness using inductive-capacitive (LC) resonant metamaterial terahertz (THz) impedance spectroscopy. THz LC resonant metamaterials demonstrate high sensitivity to changes of the substrate’s effective relative permittivity/refractive index. This sensitivity is manifested by a change in the metamaterial’s natural resonating frequency. Utilizing this property, we built an analytical model and experimental tool to determine the interfacial oxide layer thickness. It is supported by 3D electromagnetic simulations and terahertz spectroscopic results, utilizing our highly sensitive arrowhead LC resonant metamaterial sensor. This method can detect changes in interfacial oxide layer thickness with an accuracy of 2 nm and sensitivity of 1200 GHz/RIU, which is one of the highest sensitivities to date for determining the interfacial dielectrics. We also demonstrate a complete correlation of the simulations with spectroscopic experiments, verified by measuring the real oxide thickness using a focused-ion beam. This nondestructive method enables accurate profiling of the interfacial oxide across the wafer.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 41","pages":"19724–19730"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate Nondestructive Determination of Interfacial Oxide Layer Thickness on Si Wafers Using THz Inductive-Capacitive Resonant Metamaterial Spectroscopy\",\"authors\":\"Heena Khand,&nbsp;, ,&nbsp;Rudrarup Sengupta*,&nbsp;, and ,&nbsp;Gabby Sarusi,&nbsp;\",\"doi\":\"10.1021/acsanm.5c03806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We present a nondestructive technique to accurately measure interfacial oxide layer thickness using inductive-capacitive (LC) resonant metamaterial terahertz (THz) impedance spectroscopy. THz LC resonant metamaterials demonstrate high sensitivity to changes of the substrate’s effective relative permittivity/refractive index. This sensitivity is manifested by a change in the metamaterial’s natural resonating frequency. Utilizing this property, we built an analytical model and experimental tool to determine the interfacial oxide layer thickness. It is supported by 3D electromagnetic simulations and terahertz spectroscopic results, utilizing our highly sensitive arrowhead LC resonant metamaterial sensor. This method can detect changes in interfacial oxide layer thickness with an accuracy of 2 nm and sensitivity of 1200 GHz/RIU, which is one of the highest sensitivities to date for determining the interfacial dielectrics. We also demonstrate a complete correlation of the simulations with spectroscopic experiments, verified by measuring the real oxide thickness using a focused-ion beam. This nondestructive method enables accurate profiling of the interfacial oxide across the wafer.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 41\",\"pages\":\"19724–19730\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c03806\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03806","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用电感-电容(LC)谐振超材料太赫兹(THz)阻抗谱法精确测量界面氧化层厚度的无损技术。太赫兹LC谐振材料对衬底的有效相对介电常数/折射率的变化具有很高的灵敏度。这种灵敏度表现在超材料自然共振频率的变化上。利用这一特性,我们建立了分析模型和实验工具来确定界面氧化层厚度。它由3D电磁模拟和太赫兹光谱结果支持,利用我们高灵敏度的箭头LC谐振超材料传感器。该方法可以检测界面氧化层厚度的变化,精度为2 nm,灵敏度为1200 GHz/RIU,是迄今为止测定界面电介质的最高灵敏度之一。我们还证明了模拟与光谱实验的完全相关性,并通过使用聚焦离子束测量真实的氧化物厚度来验证。这种非破坏性的方法可以精确地描绘晶圆上的界面氧化物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accurate Nondestructive Determination of Interfacial Oxide Layer Thickness on Si Wafers Using THz Inductive-Capacitive Resonant Metamaterial Spectroscopy

Accurate Nondestructive Determination of Interfacial Oxide Layer Thickness on Si Wafers Using THz Inductive-Capacitive Resonant Metamaterial Spectroscopy

We present a nondestructive technique to accurately measure interfacial oxide layer thickness using inductive-capacitive (LC) resonant metamaterial terahertz (THz) impedance spectroscopy. THz LC resonant metamaterials demonstrate high sensitivity to changes of the substrate’s effective relative permittivity/refractive index. This sensitivity is manifested by a change in the metamaterial’s natural resonating frequency. Utilizing this property, we built an analytical model and experimental tool to determine the interfacial oxide layer thickness. It is supported by 3D electromagnetic simulations and terahertz spectroscopic results, utilizing our highly sensitive arrowhead LC resonant metamaterial sensor. This method can detect changes in interfacial oxide layer thickness with an accuracy of 2 nm and sensitivity of 1200 GHz/RIU, which is one of the highest sensitivities to date for determining the interfacial dielectrics. We also demonstrate a complete correlation of the simulations with spectroscopic experiments, verified by measuring the real oxide thickness using a focused-ion beam. This nondestructive method enables accurate profiling of the interfacial oxide across the wafer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信