反铁磁偶联Fe3O4@SiO2纳米颗粒体内生物医学应用的可调剩磁

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Patrick Steinkraus, , , Ecem Tiryaki, , , Inci N. Sahin, , , Tatiana Smoliarova, , , Marina Spasova, , , Michael Farle*, , and , Verónica Salgueiriño*, 
{"title":"反铁磁偶联Fe3O4@SiO2纳米颗粒体内生物医学应用的可调剩磁","authors":"Patrick Steinkraus,&nbsp;, ,&nbsp;Ecem Tiryaki,&nbsp;, ,&nbsp;Inci N. Sahin,&nbsp;, ,&nbsp;Tatiana Smoliarova,&nbsp;, ,&nbsp;Marina Spasova,&nbsp;, ,&nbsp;Michael Farle*,&nbsp;, and ,&nbsp;Verónica Salgueiriño*,&nbsp;","doi":"10.1021/acsanm.5c02458","DOIUrl":null,"url":null,"abstract":"<p >Magnetic nanoparticles with zero magnetic remanence, which can be noninvasively switched to a high magnetization state, represent a promising route for biomedical applications. Here, we report on nanoparticles consisting of ferrimagnetic Fe<sub>3</sub>O<sub>4</sub> half-ellipsoids in a shell of SiO<sub>2</sub> whose magnetization can be noninvasively set to an antiparallel-coupled (zero stray field) or ferromagnetically coupled state (maximum stray field). The hybrid particle is enclosed by a diamagnetic SiO<sub>2</sub> coating protecting it against the environment and allowing functionalization for specific drug targeting. Through micromagnetic simulations, we demonstrate the feasibility to noninvasively tune the magnetic remanence of these synthetic ellipsoidal magnetic particles from zero for the antiferromagnetic-coupled state to a maximum magnetization for the ferromagnetic-coupled state. This control renders the particles remarkable for in vivo biomedical applications requiring magnetomechanical or magnetothermal activation.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 41","pages":"19731–19738"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsanm.5c02458","citationCount":"0","resultStr":"{\"title\":\"Tunable Magnetic Remanence of Antiferromagnetically Coupled Fe3O4@SiO2 Nanoparticles for In Vivo Biomedical Applications\",\"authors\":\"Patrick Steinkraus,&nbsp;, ,&nbsp;Ecem Tiryaki,&nbsp;, ,&nbsp;Inci N. Sahin,&nbsp;, ,&nbsp;Tatiana Smoliarova,&nbsp;, ,&nbsp;Marina Spasova,&nbsp;, ,&nbsp;Michael Farle*,&nbsp;, and ,&nbsp;Verónica Salgueiriño*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c02458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Magnetic nanoparticles with zero magnetic remanence, which can be noninvasively switched to a high magnetization state, represent a promising route for biomedical applications. Here, we report on nanoparticles consisting of ferrimagnetic Fe<sub>3</sub>O<sub>4</sub> half-ellipsoids in a shell of SiO<sub>2</sub> whose magnetization can be noninvasively set to an antiparallel-coupled (zero stray field) or ferromagnetically coupled state (maximum stray field). The hybrid particle is enclosed by a diamagnetic SiO<sub>2</sub> coating protecting it against the environment and allowing functionalization for specific drug targeting. Through micromagnetic simulations, we demonstrate the feasibility to noninvasively tune the magnetic remanence of these synthetic ellipsoidal magnetic particles from zero for the antiferromagnetic-coupled state to a maximum magnetization for the ferromagnetic-coupled state. This control renders the particles remarkable for in vivo biomedical applications requiring magnetomechanical or magnetothermal activation.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 41\",\"pages\":\"19731–19738\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsanm.5c02458\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c02458\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c02458","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有零剩磁的磁性纳米颗粒可以无创地切换到高磁化状态,是生物医学应用的一条很有前途的途径。在这里,我们报道了由铁磁性Fe3O4半椭球组成的纳米颗粒,其磁化可以非侵入性地设置为反平行耦合(零杂散场)或铁磁耦合状态(最大杂散场)。杂化颗粒由抗磁性SiO2涂层包裹,保护其不受环境影响,并允许功能化以实现特定的药物靶向。通过微磁模拟,我们证明了将这些合成椭球状磁性粒子的剩磁从反铁磁耦合态的零到铁磁耦合态的最大磁化的无创调谐的可行性。这种控制使得颗粒在体内生物医学应用中需要磁机械或磁热激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunable Magnetic Remanence of Antiferromagnetically Coupled Fe3O4@SiO2 Nanoparticles for In Vivo Biomedical Applications

Magnetic nanoparticles with zero magnetic remanence, which can be noninvasively switched to a high magnetization state, represent a promising route for biomedical applications. Here, we report on nanoparticles consisting of ferrimagnetic Fe3O4 half-ellipsoids in a shell of SiO2 whose magnetization can be noninvasively set to an antiparallel-coupled (zero stray field) or ferromagnetically coupled state (maximum stray field). The hybrid particle is enclosed by a diamagnetic SiO2 coating protecting it against the environment and allowing functionalization for specific drug targeting. Through micromagnetic simulations, we demonstrate the feasibility to noninvasively tune the magnetic remanence of these synthetic ellipsoidal magnetic particles from zero for the antiferromagnetic-coupled state to a maximum magnetization for the ferromagnetic-coupled state. This control renders the particles remarkable for in vivo biomedical applications requiring magnetomechanical or magnetothermal activation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信