从中心对称到非中心对称的短肽晶体结构调制实现压电

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mei-Ling Tan, Yuanyu Luo, Shuaijie Liu, Yehong Huo, Jingwen Zhao, Xiaohui Xu, Jinlin Song, Wei Ji
{"title":"从中心对称到非中心对称的短肽晶体结构调制实现压电","authors":"Mei-Ling Tan, Yuanyu Luo, Shuaijie Liu, Yehong Huo, Jingwen Zhao, Xiaohui Xu, Jinlin Song, Wei Ji","doi":"10.1021/acsami.5c15632","DOIUrl":null,"url":null,"abstract":"Peptide assemblies with noncentrosymmetric supramolecular structures exhibit intrinsic piezoelectricity as highly engineerable piezoelectric biomaterials. In contrast, centrosymmetric packing forming peptide assemblies are typically considered nonpiezoelectric, significantly limiting their functional applicability. Molecular engineering of peptides to modulate the architectural symmetry of assemblies from centrosymmetric to noncentrosymmetric could achieve piezoelectric functionality, which remains largely unexplored. Herein, based on the nonpiezoelectric centrosymmetric structure of glycylglycine (GG) dipeptide assemblies, we designed two chiral tripeptides by incorporating <span>l</span>-phenylalanine at the N-terminus and C-terminus of the GG building block to engineer the noncentrosymmetric crystal packing for modulating the piezoelectric properties. The X-ray diffraction studies showed that <span>l</span>-phenylalanyl-glycyl-glycine (FGG) and glycyl-glycyl-<span>l</span>-phenylalanine (GGF) assemblies crystallized in the noncentrosymmetric orthorhombic <i>P</i>2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> space group, forming right- and left-handed helical-like structures, respectively. Density functional theory (DFT) calculations revealed that FGG and GGF assemblies exhibited distinct piezoelectric responses, with maximal piezoelectric coefficients <i>d</i><sub>25</sub> of 12.7 and 3.0 pm/V, respectively. FGG crystal-based piezoelectric nanogenerator (PENG) produced stable open-circuit voltage outputs of 1.75 V under an applied force of 53 N, exhibiting robustness and durability over 3000 pressing–releasing cycles. This work explores an effective strategy to modulate the piezoelectric properties of short peptide assemblies from centrosymmetric to noncentrosymmetric structures, establishing new design frameworks and guidelines for engineering high-performance peptide-based piezoelectric biomaterials.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"37 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Modulation in Short Peptide Crystals from Centrosymmetric to Noncentrosymmetric Achieving Piezoelectricity\",\"authors\":\"Mei-Ling Tan, Yuanyu Luo, Shuaijie Liu, Yehong Huo, Jingwen Zhao, Xiaohui Xu, Jinlin Song, Wei Ji\",\"doi\":\"10.1021/acsami.5c15632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peptide assemblies with noncentrosymmetric supramolecular structures exhibit intrinsic piezoelectricity as highly engineerable piezoelectric biomaterials. In contrast, centrosymmetric packing forming peptide assemblies are typically considered nonpiezoelectric, significantly limiting their functional applicability. Molecular engineering of peptides to modulate the architectural symmetry of assemblies from centrosymmetric to noncentrosymmetric could achieve piezoelectric functionality, which remains largely unexplored. Herein, based on the nonpiezoelectric centrosymmetric structure of glycylglycine (GG) dipeptide assemblies, we designed two chiral tripeptides by incorporating <span>l</span>-phenylalanine at the N-terminus and C-terminus of the GG building block to engineer the noncentrosymmetric crystal packing for modulating the piezoelectric properties. The X-ray diffraction studies showed that <span>l</span>-phenylalanyl-glycyl-glycine (FGG) and glycyl-glycyl-<span>l</span>-phenylalanine (GGF) assemblies crystallized in the noncentrosymmetric orthorhombic <i>P</i>2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> space group, forming right- and left-handed helical-like structures, respectively. Density functional theory (DFT) calculations revealed that FGG and GGF assemblies exhibited distinct piezoelectric responses, with maximal piezoelectric coefficients <i>d</i><sub>25</sub> of 12.7 and 3.0 pm/V, respectively. FGG crystal-based piezoelectric nanogenerator (PENG) produced stable open-circuit voltage outputs of 1.75 V under an applied force of 53 N, exhibiting robustness and durability over 3000 pressing–releasing cycles. This work explores an effective strategy to modulate the piezoelectric properties of short peptide assemblies from centrosymmetric to noncentrosymmetric structures, establishing new design frameworks and guidelines for engineering high-performance peptide-based piezoelectric biomaterials.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c15632\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c15632","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有非中心对称超分子结构的肽组件作为高度工程化的压电生物材料具有固有的压电性。相反,中心对称填料形成的肽组件通常被认为是非压电的,这大大限制了它们的功能适用性。多肽的分子工程来调节从中心对称到非中心对称的结构对称性可以实现压电功能,这在很大程度上仍未被探索。本文以甘氨酸(GG)二肽组件的非压电中心对称结构为基础,通过在GG构建块的n端和c端加入l-苯丙氨酸,设计了两个手性三肽,以设计非中心对称的晶体包装来调节压电性能。x射线衍射研究表明,l-苯丙酰-甘酰-甘氨酸(FGG)和glyyl - glyyl -l-苯丙氨酸(GGF)组合在非中心对称的正交P212121空间群中结晶,分别形成右旋和左旋螺旋状结构。密度泛函理论(DFT)计算表明,FGG和GGF组件具有明显的压电响应,最大压电系数d25分别为12.7和3.0 pm/V。FGG晶体型压电纳米发电机(PENG)在53 N的外力作用下产生稳定的1.75 V开路电压输出,在3000次压释放循环中表现出坚固性和耐用性。本研究探索了一种有效的策略来调节短肽组件从中心对称到非中心对称结构的压电特性,为工程高性能肽基压电生物材料建立了新的设计框架和指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural Modulation in Short Peptide Crystals from Centrosymmetric to Noncentrosymmetric Achieving Piezoelectricity

Structural Modulation in Short Peptide Crystals from Centrosymmetric to Noncentrosymmetric Achieving Piezoelectricity
Peptide assemblies with noncentrosymmetric supramolecular structures exhibit intrinsic piezoelectricity as highly engineerable piezoelectric biomaterials. In contrast, centrosymmetric packing forming peptide assemblies are typically considered nonpiezoelectric, significantly limiting their functional applicability. Molecular engineering of peptides to modulate the architectural symmetry of assemblies from centrosymmetric to noncentrosymmetric could achieve piezoelectric functionality, which remains largely unexplored. Herein, based on the nonpiezoelectric centrosymmetric structure of glycylglycine (GG) dipeptide assemblies, we designed two chiral tripeptides by incorporating l-phenylalanine at the N-terminus and C-terminus of the GG building block to engineer the noncentrosymmetric crystal packing for modulating the piezoelectric properties. The X-ray diffraction studies showed that l-phenylalanyl-glycyl-glycine (FGG) and glycyl-glycyl-l-phenylalanine (GGF) assemblies crystallized in the noncentrosymmetric orthorhombic P212121 space group, forming right- and left-handed helical-like structures, respectively. Density functional theory (DFT) calculations revealed that FGG and GGF assemblies exhibited distinct piezoelectric responses, with maximal piezoelectric coefficients d25 of 12.7 and 3.0 pm/V, respectively. FGG crystal-based piezoelectric nanogenerator (PENG) produced stable open-circuit voltage outputs of 1.75 V under an applied force of 53 N, exhibiting robustness and durability over 3000 pressing–releasing cycles. This work explores an effective strategy to modulate the piezoelectric properties of short peptide assemblies from centrosymmetric to noncentrosymmetric structures, establishing new design frameworks and guidelines for engineering high-performance peptide-based piezoelectric biomaterials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信