反铁磁绝缘体轨道转矩的产生、传输和转换。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shilei Ding,Paul Noël,Gunasheel Kauwtilyaa Krishnaswamy,Niccolò Davitti,Giacomo Sala,Marzia Fantauzzi,Antonella Rossi,Pietro Gambardella
{"title":"反铁磁绝缘体轨道转矩的产生、传输和转换。","authors":"Shilei Ding,Paul Noël,Gunasheel Kauwtilyaa Krishnaswamy,Niccolò Davitti,Giacomo Sala,Marzia Fantauzzi,Antonella Rossi,Pietro Gambardella","doi":"10.1038/s41467-025-64273-6","DOIUrl":null,"url":null,"abstract":"Electrical control of magnetization in nanoscale devices can be significantly improved through the efficient generation of orbital currents and their conversion into spin currents. In nonmagnetic/ferromagnetic bilayers, this conversion produces a torque on the magnetization, enabling magnetization switching and dynamic manipulation. While previous studies focus on metallic ferromagnets, we demonstrate a large orbital torque and enhanced orbital-to-spin conversion by an antiferromagnetic insulating CoO layer. Measurements in CuOx/CoO/Co trilayers show that inserting CoO reverses the torque's sign and triples its magnitude compared to CuOx/Co. This behaviour stems from the inverted oxygen gradient at the CuOx/CoO interface and CoO's high orbital multiplicity, which favours the transmission of orbital momenta and efficient orbital-to-spin conversion. At low temperatures, the onset of antiferromagnetic order induces a further many-fold increase of the torque, which we attribute to the efficient excitation and propagation of spin-orbit excitons induced by magnetic coupling. Comparative measurements of CuOx/NiO/Co and CuOx/MnO/Co trilayers show that the torque efficiency scales with the orbital momentum of the Co2+, Ni2+, and Mn2+ ions in the antiferromagnet. These results reveal that antiferromagnetic insulators like CoO provide highly effective orbital-to-spin transduction, combining orbital torque and exchange bias functionalities to improve the performance of spintronic devices.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"55 1","pages":"9239"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation, transmission, and conversion of orbital torque by an antiferromagnetic insulator.\",\"authors\":\"Shilei Ding,Paul Noël,Gunasheel Kauwtilyaa Krishnaswamy,Niccolò Davitti,Giacomo Sala,Marzia Fantauzzi,Antonella Rossi,Pietro Gambardella\",\"doi\":\"10.1038/s41467-025-64273-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical control of magnetization in nanoscale devices can be significantly improved through the efficient generation of orbital currents and their conversion into spin currents. In nonmagnetic/ferromagnetic bilayers, this conversion produces a torque on the magnetization, enabling magnetization switching and dynamic manipulation. While previous studies focus on metallic ferromagnets, we demonstrate a large orbital torque and enhanced orbital-to-spin conversion by an antiferromagnetic insulating CoO layer. Measurements in CuOx/CoO/Co trilayers show that inserting CoO reverses the torque's sign and triples its magnitude compared to CuOx/Co. This behaviour stems from the inverted oxygen gradient at the CuOx/CoO interface and CoO's high orbital multiplicity, which favours the transmission of orbital momenta and efficient orbital-to-spin conversion. At low temperatures, the onset of antiferromagnetic order induces a further many-fold increase of the torque, which we attribute to the efficient excitation and propagation of spin-orbit excitons induced by magnetic coupling. Comparative measurements of CuOx/NiO/Co and CuOx/MnO/Co trilayers show that the torque efficiency scales with the orbital momentum of the Co2+, Ni2+, and Mn2+ ions in the antiferromagnet. These results reveal that antiferromagnetic insulators like CoO provide highly effective orbital-to-spin transduction, combining orbital torque and exchange bias functionalities to improve the performance of spintronic devices.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"55 1\",\"pages\":\"9239\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64273-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64273-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过有效地产生轨道电流并将其转换为自旋电流,可以显著改善纳米器件中磁化的电气控制。在非磁性/铁磁性双层中,这种转换会对磁化产生转矩,从而实现磁化开关和动态操作。虽然以前的研究主要集中在金属铁磁体上,但我们通过反铁磁绝缘CoO层证明了大的轨道扭矩和增强的轨道自旋转换。在CuOx/CoO/Co三层中进行的测量表明,与CuOx/Co相比,插入CoO可以逆转扭矩符号,并且其大小增加了两倍。这种行为源于CuOx/CoO界面上的反向氧梯度和CoO的高轨道多重性,这有利于轨道动量的传递和有效的轨道自旋转换。在低温下,反铁磁序的出现导致转矩进一步增加数倍,这归因于磁耦合引起的自旋轨道激子的有效激发和传播。对比CuOx/NiO/Co和CuOx/MnO/Co三层膜的测量结果表明,转矩效率与反铁磁体中Co2+、Ni2+和Mn2+离子的轨道动量有关。这些结果表明,像CoO这样的反铁磁绝缘体提供了高效的轨道到自旋转导,结合了轨道扭矩和交换偏置功能,以提高自旋电子器件的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation, transmission, and conversion of orbital torque by an antiferromagnetic insulator.
Electrical control of magnetization in nanoscale devices can be significantly improved through the efficient generation of orbital currents and their conversion into spin currents. In nonmagnetic/ferromagnetic bilayers, this conversion produces a torque on the magnetization, enabling magnetization switching and dynamic manipulation. While previous studies focus on metallic ferromagnets, we demonstrate a large orbital torque and enhanced orbital-to-spin conversion by an antiferromagnetic insulating CoO layer. Measurements in CuOx/CoO/Co trilayers show that inserting CoO reverses the torque's sign and triples its magnitude compared to CuOx/Co. This behaviour stems from the inverted oxygen gradient at the CuOx/CoO interface and CoO's high orbital multiplicity, which favours the transmission of orbital momenta and efficient orbital-to-spin conversion. At low temperatures, the onset of antiferromagnetic order induces a further many-fold increase of the torque, which we attribute to the efficient excitation and propagation of spin-orbit excitons induced by magnetic coupling. Comparative measurements of CuOx/NiO/Co and CuOx/MnO/Co trilayers show that the torque efficiency scales with the orbital momentum of the Co2+, Ni2+, and Mn2+ ions in the antiferromagnet. These results reveal that antiferromagnetic insulators like CoO provide highly effective orbital-to-spin transduction, combining orbital torque and exchange bias functionalities to improve the performance of spintronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信