{"title":"带电电流中微子和反中微子诱导核子产生相关粒子","authors":"A. Fatima, M. Sajjad Athar, S. K. Singh","doi":"10.1103/6c5c-sl4t","DOIUrl":null,"url":null,"abstract":"In this work, we study the charged-current (anti)neutrino induced associated particle (K</a:mi>Λ</a:mi></a:math>) production (<d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mi mathvariant=\"normal\">Δ</d:mi><d:mi>S</d:mi><d:mo>=</d:mo><d:mn>0</d:mn></d:math>) from free nucleons in the energy region of a few GeV, relevant to the (anti)neutrino oscillation experiments with accelerator and atmospheric neutrinos. We employ a model based on effective Lagrangians to evaluate the contributions from the nonresonant and the resonant diagrams. The nonresonant background terms are calculated using a microscopic model derived from the SU(3) chiral Lagrangians. For the resonant contributions, we consider the low-lying spin-<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mfrac><g:mn>1</g:mn><g:mn>2</g:mn></g:mfrac></g:math> resonances, such as <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>S</i:mi><i:mn>11</i:mn></i:msub><i:mo stretchy=\"false\">(</i:mo><i:mn>1650</i:mn><i:mo stretchy=\"false\">)</i:mo></i:math>, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>P</m:mi><m:mn>11</m:mn></m:msub><m:mo stretchy=\"false\">(</m:mo><m:mn>1710</m:mn><m:mo stretchy=\"false\">)</m:mo></m:math>, <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msub><q:mi>P</q:mi><q:mn>11</q:mn></q:msub><q:mo stretchy=\"false\">(</q:mo><q:mn>1880</q:mn><q:mo stretchy=\"false\">)</q:mo></q:math>, and <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:msub><u:mi>S</u:mi><u:mn>11</u:mn></u:msub><u:mo stretchy=\"false\">(</u:mo><u:mn>1895</u:mn><u:mo stretchy=\"false\">)</u:mo></u:math>, and spin-<y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mfrac><y:mn>3</y:mn><y:mn>2</y:mn></y:mfrac></y:math> resonances, such as P</ab:mi>13</ab:mn></ab:msub>(</ab:mo>1720</ab:mn>)</ab:mo></ab:math> and <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:msub><eb:mi>P</eb:mi><eb:mn>13</eb:mn></eb:msub><eb:mo stretchy=\"false\">(</eb:mo><eb:mn>1900</eb:mn><eb:mo stretchy=\"false\">)</eb:mo></eb:math>, which have finite branching ratios to the <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mi>K</ib:mi><ib:mi mathvariant=\"normal\">Λ</ib:mi></ib:math> channel. These resonant contributions are modeled using an effective phenomenological Lagrangian approach, with strong couplings determined from the experimental branching ratios and the decay widths to the <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:mi>K</lb:mi><lb:mi mathvariant=\"normal\">Λ</lb:mi></lb:math> channel. To fix the parameters of the vector current interaction, the model is first used to reproduce satisfactorily the MAMI@Mainz experimental data on the real photon induced scattering off the nucleon resulting an eta meson in the final state and with the CLAS@JLab data for the <ob:math xmlns:ob=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ob:mi>K</ob:mi><ob:mi mathvariant=\"normal\">Λ</ob:mi></ob:math> production in the final state. The partial conservation of the axial vector current hypothesis and the generalized Goldberger-Treiman relation are used to fix the parameters of the axial vector interaction. The model is then applied to study the weak production of <rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rb:mi>K</rb:mi><rb:mi mathvariant=\"normal\">Λ</rb:mi></rb:math> induced by the neutrinos and antineutrinos and predicts the numerical values for the <ub:math xmlns:ub=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ub:msup><ub:mi>Q</ub:mi><ub:mn>2</ub:mn></ub:msup></ub:math> distribution <wb:math xmlns:wb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wb:mo stretchy=\"false\">(</wb:mo><wb:mfrac><wb:mrow><wb:mi>d</wb:mi><wb:mi>σ</wb:mi></wb:mrow><wb:mrow><wb:mi>d</wb:mi><wb:msup><wb:mi>Q</wb:mi><wb:mn>2</wb:mn></wb:msup></wb:mrow></wb:mfrac><wb:mo stretchy=\"false\">)</wb:mo></wb:math>, the kinetic energy distribution for the outgoing kaon (</ac:mo>d</ac:mi>σ</ac:mi></ac:mrow>d</ac:mi>p</ac:mi>K</ac:mi></ac:msub></ac:mrow></ac:mfrac>)</ac:mo></ac:math>, and the total scattering cross sections (<ec:math xmlns:ec=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ec:mi>σ</ec:mi></ec:math>) with and without a cut on the center of mass energy <gc:math xmlns:gc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gc:mi>W</gc:mi></gc:math>. The results presented in this work are relevant for the present and future accelerator experiments like MicroBooNE, T2K, NOvA, MINERvA, SBND, ICARUS, T2-HyperK, and DUNE as well as for the atmospheric neutrino experiments.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"45 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charged current neutrino and antineutrino induced associated particle production from nucleons\",\"authors\":\"A. Fatima, M. Sajjad Athar, S. K. Singh\",\"doi\":\"10.1103/6c5c-sl4t\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the charged-current (anti)neutrino induced associated particle (K</a:mi>Λ</a:mi></a:math>) production (<d:math xmlns:d=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><d:mi mathvariant=\\\"normal\\\">Δ</d:mi><d:mi>S</d:mi><d:mo>=</d:mo><d:mn>0</d:mn></d:math>) from free nucleons in the energy region of a few GeV, relevant to the (anti)neutrino oscillation experiments with accelerator and atmospheric neutrinos. We employ a model based on effective Lagrangians to evaluate the contributions from the nonresonant and the resonant diagrams. The nonresonant background terms are calculated using a microscopic model derived from the SU(3) chiral Lagrangians. For the resonant contributions, we consider the low-lying spin-<g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mfrac><g:mn>1</g:mn><g:mn>2</g:mn></g:mfrac></g:math> resonances, such as <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msub><i:mi>S</i:mi><i:mn>11</i:mn></i:msub><i:mo stretchy=\\\"false\\\">(</i:mo><i:mn>1650</i:mn><i:mo stretchy=\\\"false\\\">)</i:mo></i:math>, <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:msub><m:mi>P</m:mi><m:mn>11</m:mn></m:msub><m:mo stretchy=\\\"false\\\">(</m:mo><m:mn>1710</m:mn><m:mo stretchy=\\\"false\\\">)</m:mo></m:math>, <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:msub><q:mi>P</q:mi><q:mn>11</q:mn></q:msub><q:mo stretchy=\\\"false\\\">(</q:mo><q:mn>1880</q:mn><q:mo stretchy=\\\"false\\\">)</q:mo></q:math>, and <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:msub><u:mi>S</u:mi><u:mn>11</u:mn></u:msub><u:mo stretchy=\\\"false\\\">(</u:mo><u:mn>1895</u:mn><u:mo stretchy=\\\"false\\\">)</u:mo></u:math>, and spin-<y:math xmlns:y=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><y:mfrac><y:mn>3</y:mn><y:mn>2</y:mn></y:mfrac></y:math> resonances, such as P</ab:mi>13</ab:mn></ab:msub>(</ab:mo>1720</ab:mn>)</ab:mo></ab:math> and <eb:math xmlns:eb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><eb:msub><eb:mi>P</eb:mi><eb:mn>13</eb:mn></eb:msub><eb:mo stretchy=\\\"false\\\">(</eb:mo><eb:mn>1900</eb:mn><eb:mo stretchy=\\\"false\\\">)</eb:mo></eb:math>, which have finite branching ratios to the <ib:math xmlns:ib=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ib:mi>K</ib:mi><ib:mi mathvariant=\\\"normal\\\">Λ</ib:mi></ib:math> channel. These resonant contributions are modeled using an effective phenomenological Lagrangian approach, with strong couplings determined from the experimental branching ratios and the decay widths to the <lb:math xmlns:lb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><lb:mi>K</lb:mi><lb:mi mathvariant=\\\"normal\\\">Λ</lb:mi></lb:math> channel. To fix the parameters of the vector current interaction, the model is first used to reproduce satisfactorily the MAMI@Mainz experimental data on the real photon induced scattering off the nucleon resulting an eta meson in the final state and with the CLAS@JLab data for the <ob:math xmlns:ob=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ob:mi>K</ob:mi><ob:mi mathvariant=\\\"normal\\\">Λ</ob:mi></ob:math> production in the final state. The partial conservation of the axial vector current hypothesis and the generalized Goldberger-Treiman relation are used to fix the parameters of the axial vector interaction. The model is then applied to study the weak production of <rb:math xmlns:rb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><rb:mi>K</rb:mi><rb:mi mathvariant=\\\"normal\\\">Λ</rb:mi></rb:math> induced by the neutrinos and antineutrinos and predicts the numerical values for the <ub:math xmlns:ub=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ub:msup><ub:mi>Q</ub:mi><ub:mn>2</ub:mn></ub:msup></ub:math> distribution <wb:math xmlns:wb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><wb:mo stretchy=\\\"false\\\">(</wb:mo><wb:mfrac><wb:mrow><wb:mi>d</wb:mi><wb:mi>σ</wb:mi></wb:mrow><wb:mrow><wb:mi>d</wb:mi><wb:msup><wb:mi>Q</wb:mi><wb:mn>2</wb:mn></wb:msup></wb:mrow></wb:mfrac><wb:mo stretchy=\\\"false\\\">)</wb:mo></wb:math>, the kinetic energy distribution for the outgoing kaon (</ac:mo>d</ac:mi>σ</ac:mi></ac:mrow>d</ac:mi>p</ac:mi>K</ac:mi></ac:msub></ac:mrow></ac:mfrac>)</ac:mo></ac:math>, and the total scattering cross sections (<ec:math xmlns:ec=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ec:mi>σ</ec:mi></ec:math>) with and without a cut on the center of mass energy <gc:math xmlns:gc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gc:mi>W</gc:mi></gc:math>. The results presented in this work are relevant for the present and future accelerator experiments like MicroBooNE, T2K, NOvA, MINERvA, SBND, ICARUS, T2-HyperK, and DUNE as well as for the atmospheric neutrino experiments.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/6c5c-sl4t\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/6c5c-sl4t","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Charged current neutrino and antineutrino induced associated particle production from nucleons
In this work, we study the charged-current (anti)neutrino induced associated particle (KΛ) production (ΔS=0) from free nucleons in the energy region of a few GeV, relevant to the (anti)neutrino oscillation experiments with accelerator and atmospheric neutrinos. We employ a model based on effective Lagrangians to evaluate the contributions from the nonresonant and the resonant diagrams. The nonresonant background terms are calculated using a microscopic model derived from the SU(3) chiral Lagrangians. For the resonant contributions, we consider the low-lying spin-12 resonances, such as S11(1650), P11(1710), P11(1880), and S11(1895), and spin-32 resonances, such as P13(1720) and P13(1900), which have finite branching ratios to the KΛ channel. These resonant contributions are modeled using an effective phenomenological Lagrangian approach, with strong couplings determined from the experimental branching ratios and the decay widths to the KΛ channel. To fix the parameters of the vector current interaction, the model is first used to reproduce satisfactorily the MAMI@Mainz experimental data on the real photon induced scattering off the nucleon resulting an eta meson in the final state and with the CLAS@JLab data for the KΛ production in the final state. The partial conservation of the axial vector current hypothesis and the generalized Goldberger-Treiman relation are used to fix the parameters of the axial vector interaction. The model is then applied to study the weak production of KΛ induced by the neutrinos and antineutrinos and predicts the numerical values for the Q2 distribution (dσdQ2), the kinetic energy distribution for the outgoing kaon (dσdpK), and the total scattering cross sections (σ) with and without a cut on the center of mass energy W. The results presented in this work are relevant for the present and future accelerator experiments like MicroBooNE, T2K, NOvA, MINERvA, SBND, ICARUS, T2-HyperK, and DUNE as well as for the atmospheric neutrino experiments.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.