{"title":"哈密顿形式主义中的强CP相和宇称","authors":"Ravi Kuchimanchi","doi":"10.1103/bl6j-dt75","DOIUrl":null,"url":null,"abstract":"We show using the Hamiltonian formalism that if parity is a good symmetry of QCD, then the strong C</a:mi>P</a:mi></a:math> phase <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mover accent=\"true\"><c:mi>θ</c:mi><c:mo stretchy=\"false\">¯</c:mo></c:mover></c:math> must be 0 or <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>π</g:mi></g:math>. We find that for <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>P</i:mi></i:math> to be a physical symmetry, it must leave the Hilbert space <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi mathvariant=\"script\">H</k:mi><k:mi>θ</k:mi></k:msub></k:math> associated with the <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mi>θ</n:mi></n:math>-vacuum invariant (<p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mrow><p:mi>P</p:mi><p:mo>:</p:mo><p:mtext> </p:mtext><p:mtext> </p:mtext><p:msub><p:mrow><p:mi mathvariant=\"script\">H</p:mi></p:mrow><p:mrow><p:mi>θ</p:mi></p:mrow></p:msub><p:mo stretchy=\"false\">→</p:mo><p:msub><p:mrow><p:mi mathvariant=\"script\">H</p:mi></p:mrow><p:mrow><p:mi>θ</p:mi></p:mrow></p:msub></p:mrow></p:math>), which is possible only for <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>θ</u:mi><u:mo>=</u:mo><u:mn>0</u:mn></u:math> or <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>π</w:mi></w:math>. We also show that forming linear combinations of states from different <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mi>θ</y:mi></y:math> sectors produces only classical statistical mixtures, consistent with superselection rules, confirming that H</ab:mi>θ</ab:mi></ab:msub></ab:math> is the most general Hilbert space for the quantum theory. Furthermore, we demonstrate that requiring <db:math xmlns:db=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><db:mo stretchy=\"false\">[</db:mo><db:mi>P</db:mi><db:mo>,</db:mo><db:mi mathvariant=\"normal\">Ω</db:mi><db:mo stretchy=\"false\">]</db:mo><db:mo>=</db:mo><db:mn>0</db:mn></db:math>—where <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mi mathvariant=\"normal\">Ω</ib:mi></ib:math> is the generator of large gauge transformations—independently enforces <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:mover accent=\"true\"><lb:mi>θ</lb:mi><lb:mo stretchy=\"false\">¯</lb:mo></lb:mover><lb:mo>=</lb:mo><lb:mn>0</lb:mn></lb:math> (mod <pb:math xmlns:pb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><pb:mi>π</pb:mi></pb:math>), and that for complex quark mass matrix <rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rb:mi>M</rb:mi></rb:math>, if a generalized parity operator <tb:math xmlns:tb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><tb:mi mathvariant=\"script\">P</tb:mi></tb:math> is a symmetry, then the value of <wb:math xmlns:wb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wb:mi>θ</wb:mi></wb:math> gets determined so that it exactly cancels <yb:math xmlns:yb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><yb:mi>A</yb:mi><yb:mi>r</yb:mi><yb:mi>g</yb:mi><yb:mi>D</yb:mi><yb:mi>e</yb:mi><yb:mi>t</yb:mi><yb:mi>M</yb:mi></yb:math>, again giving θ</ac:mi></ac:mrow>¯</ac:mo></ac:mrow></ac:mover>=</ac:mo>0</ac:mn></ac:mtext>(</ac:mo>mod</ac:mi></ac:mtext></ac:mtext>π</ac:mi>)</ac:mo></ac:mrow></ac:math>. These results establish the equivalence of the Hamiltonian and Lagrangian approaches to the strong <gc:math xmlns:gc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gc:mi>C</gc:mi><gc:mi>P</gc:mi></gc:math> problem.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"117 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong CP phase and parity in the Hamiltonian formalism\",\"authors\":\"Ravi Kuchimanchi\",\"doi\":\"10.1103/bl6j-dt75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show using the Hamiltonian formalism that if parity is a good symmetry of QCD, then the strong C</a:mi>P</a:mi></a:math> phase <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mover accent=\\\"true\\\"><c:mi>θ</c:mi><c:mo stretchy=\\\"false\\\">¯</c:mo></c:mover></c:math> must be 0 or <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>π</g:mi></g:math>. We find that for <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mi>P</i:mi></i:math> to be a physical symmetry, it must leave the Hilbert space <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:msub><k:mi mathvariant=\\\"script\\\">H</k:mi><k:mi>θ</k:mi></k:msub></k:math> associated with the <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><n:mi>θ</n:mi></n:math>-vacuum invariant (<p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:mrow><p:mi>P</p:mi><p:mo>:</p:mo><p:mtext> </p:mtext><p:mtext> </p:mtext><p:msub><p:mrow><p:mi mathvariant=\\\"script\\\">H</p:mi></p:mrow><p:mrow><p:mi>θ</p:mi></p:mrow></p:msub><p:mo stretchy=\\\"false\\\">→</p:mo><p:msub><p:mrow><p:mi mathvariant=\\\"script\\\">H</p:mi></p:mrow><p:mrow><p:mi>θ</p:mi></p:mrow></p:msub></p:mrow></p:math>), which is possible only for <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mi>θ</u:mi><u:mo>=</u:mo><u:mn>0</u:mn></u:math> or <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:mi>π</w:mi></w:math>. We also show that forming linear combinations of states from different <y:math xmlns:y=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><y:mi>θ</y:mi></y:math> sectors produces only classical statistical mixtures, consistent with superselection rules, confirming that H</ab:mi>θ</ab:mi></ab:msub></ab:math> is the most general Hilbert space for the quantum theory. Furthermore, we demonstrate that requiring <db:math xmlns:db=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><db:mo stretchy=\\\"false\\\">[</db:mo><db:mi>P</db:mi><db:mo>,</db:mo><db:mi mathvariant=\\\"normal\\\">Ω</db:mi><db:mo stretchy=\\\"false\\\">]</db:mo><db:mo>=</db:mo><db:mn>0</db:mn></db:math>—where <ib:math xmlns:ib=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ib:mi mathvariant=\\\"normal\\\">Ω</ib:mi></ib:math> is the generator of large gauge transformations—independently enforces <lb:math xmlns:lb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><lb:mover accent=\\\"true\\\"><lb:mi>θ</lb:mi><lb:mo stretchy=\\\"false\\\">¯</lb:mo></lb:mover><lb:mo>=</lb:mo><lb:mn>0</lb:mn></lb:math> (mod <pb:math xmlns:pb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><pb:mi>π</pb:mi></pb:math>), and that for complex quark mass matrix <rb:math xmlns:rb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><rb:mi>M</rb:mi></rb:math>, if a generalized parity operator <tb:math xmlns:tb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><tb:mi mathvariant=\\\"script\\\">P</tb:mi></tb:math> is a symmetry, then the value of <wb:math xmlns:wb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><wb:mi>θ</wb:mi></wb:math> gets determined so that it exactly cancels <yb:math xmlns:yb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><yb:mi>A</yb:mi><yb:mi>r</yb:mi><yb:mi>g</yb:mi><yb:mi>D</yb:mi><yb:mi>e</yb:mi><yb:mi>t</yb:mi><yb:mi>M</yb:mi></yb:math>, again giving θ</ac:mi></ac:mrow>¯</ac:mo></ac:mrow></ac:mover>=</ac:mo>0</ac:mn></ac:mtext>(</ac:mo>mod</ac:mi></ac:mtext></ac:mtext>π</ac:mi>)</ac:mo></ac:mrow></ac:math>. These results establish the equivalence of the Hamiltonian and Lagrangian approaches to the strong <gc:math xmlns:gc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gc:mi>C</gc:mi><gc:mi>P</gc:mi></gc:math> problem.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/bl6j-dt75\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/bl6j-dt75","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Strong CP phase and parity in the Hamiltonian formalism
We show using the Hamiltonian formalism that if parity is a good symmetry of QCD, then the strong CP phase θ¯ must be 0 or π. We find that for P to be a physical symmetry, it must leave the Hilbert space Hθ associated with the θ-vacuum invariant (P:Hθ→Hθ), which is possible only for θ=0 or π. We also show that forming linear combinations of states from different θ sectors produces only classical statistical mixtures, consistent with superselection rules, confirming that Hθ is the most general Hilbert space for the quantum theory. Furthermore, we demonstrate that requiring [P,Ω]=0—where Ω is the generator of large gauge transformations—independently enforces θ¯=0 (mod π), and that for complex quark mass matrix M, if a generalized parity operator P is a symmetry, then the value of θ gets determined so that it exactly cancels ArgDetM, again giving θ¯=0(modπ). These results establish the equivalence of the Hamiltonian and Lagrangian approaches to the strong CP problem.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.