哈密顿形式主义中的强CP相和宇称

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Ravi Kuchimanchi
{"title":"哈密顿形式主义中的强CP相和宇称","authors":"Ravi Kuchimanchi","doi":"10.1103/bl6j-dt75","DOIUrl":null,"url":null,"abstract":"We show using the Hamiltonian formalism that if parity is a good symmetry of QCD, then the strong C</a:mi>P</a:mi></a:math> phase <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mover accent=\"true\"><c:mi>θ</c:mi><c:mo stretchy=\"false\">¯</c:mo></c:mover></c:math> must be 0 or <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>π</g:mi></g:math>. We find that for <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>P</i:mi></i:math> to be a physical symmetry, it must leave the Hilbert space <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi mathvariant=\"script\">H</k:mi><k:mi>θ</k:mi></k:msub></k:math> associated with the <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mi>θ</n:mi></n:math>-vacuum invariant (<p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mrow><p:mi>P</p:mi><p:mo>:</p:mo><p:mtext> </p:mtext><p:mtext> </p:mtext><p:msub><p:mrow><p:mi mathvariant=\"script\">H</p:mi></p:mrow><p:mrow><p:mi>θ</p:mi></p:mrow></p:msub><p:mo stretchy=\"false\">→</p:mo><p:msub><p:mrow><p:mi mathvariant=\"script\">H</p:mi></p:mrow><p:mrow><p:mi>θ</p:mi></p:mrow></p:msub></p:mrow></p:math>), which is possible only for <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>θ</u:mi><u:mo>=</u:mo><u:mn>0</u:mn></u:math> or <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>π</w:mi></w:math>. We also show that forming linear combinations of states from different <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mi>θ</y:mi></y:math> sectors produces only classical statistical mixtures, consistent with superselection rules, confirming that H</ab:mi>θ</ab:mi></ab:msub></ab:math> is the most general Hilbert space for the quantum theory. Furthermore, we demonstrate that requiring <db:math xmlns:db=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><db:mo stretchy=\"false\">[</db:mo><db:mi>P</db:mi><db:mo>,</db:mo><db:mi mathvariant=\"normal\">Ω</db:mi><db:mo stretchy=\"false\">]</db:mo><db:mo>=</db:mo><db:mn>0</db:mn></db:math>—where <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mi mathvariant=\"normal\">Ω</ib:mi></ib:math> is the generator of large gauge transformations—independently enforces <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:mover accent=\"true\"><lb:mi>θ</lb:mi><lb:mo stretchy=\"false\">¯</lb:mo></lb:mover><lb:mo>=</lb:mo><lb:mn>0</lb:mn></lb:math> (mod <pb:math xmlns:pb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><pb:mi>π</pb:mi></pb:math>), and that for complex quark mass matrix <rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rb:mi>M</rb:mi></rb:math>, if a generalized parity operator <tb:math xmlns:tb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><tb:mi mathvariant=\"script\">P</tb:mi></tb:math> is a symmetry, then the value of <wb:math xmlns:wb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wb:mi>θ</wb:mi></wb:math> gets determined so that it exactly cancels <yb:math xmlns:yb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><yb:mi>A</yb:mi><yb:mi>r</yb:mi><yb:mi>g</yb:mi><yb:mi>D</yb:mi><yb:mi>e</yb:mi><yb:mi>t</yb:mi><yb:mi>M</yb:mi></yb:math>, again giving θ</ac:mi></ac:mrow>¯</ac:mo></ac:mrow></ac:mover>=</ac:mo>0</ac:mn></ac:mtext>(</ac:mo>mod</ac:mi></ac:mtext></ac:mtext>π</ac:mi>)</ac:mo></ac:mrow></ac:math>. These results establish the equivalence of the Hamiltonian and Lagrangian approaches to the strong <gc:math xmlns:gc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gc:mi>C</gc:mi><gc:mi>P</gc:mi></gc:math> problem.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"117 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong CP phase and parity in the Hamiltonian formalism\",\"authors\":\"Ravi Kuchimanchi\",\"doi\":\"10.1103/bl6j-dt75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show using the Hamiltonian formalism that if parity is a good symmetry of QCD, then the strong C</a:mi>P</a:mi></a:math> phase <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mover accent=\\\"true\\\"><c:mi>θ</c:mi><c:mo stretchy=\\\"false\\\">¯</c:mo></c:mover></c:math> must be 0 or <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>π</g:mi></g:math>. We find that for <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mi>P</i:mi></i:math> to be a physical symmetry, it must leave the Hilbert space <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:msub><k:mi mathvariant=\\\"script\\\">H</k:mi><k:mi>θ</k:mi></k:msub></k:math> associated with the <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><n:mi>θ</n:mi></n:math>-vacuum invariant (<p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:mrow><p:mi>P</p:mi><p:mo>:</p:mo><p:mtext> </p:mtext><p:mtext> </p:mtext><p:msub><p:mrow><p:mi mathvariant=\\\"script\\\">H</p:mi></p:mrow><p:mrow><p:mi>θ</p:mi></p:mrow></p:msub><p:mo stretchy=\\\"false\\\">→</p:mo><p:msub><p:mrow><p:mi mathvariant=\\\"script\\\">H</p:mi></p:mrow><p:mrow><p:mi>θ</p:mi></p:mrow></p:msub></p:mrow></p:math>), which is possible only for <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mi>θ</u:mi><u:mo>=</u:mo><u:mn>0</u:mn></u:math> or <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:mi>π</w:mi></w:math>. We also show that forming linear combinations of states from different <y:math xmlns:y=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><y:mi>θ</y:mi></y:math> sectors produces only classical statistical mixtures, consistent with superselection rules, confirming that H</ab:mi>θ</ab:mi></ab:msub></ab:math> is the most general Hilbert space for the quantum theory. Furthermore, we demonstrate that requiring <db:math xmlns:db=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><db:mo stretchy=\\\"false\\\">[</db:mo><db:mi>P</db:mi><db:mo>,</db:mo><db:mi mathvariant=\\\"normal\\\">Ω</db:mi><db:mo stretchy=\\\"false\\\">]</db:mo><db:mo>=</db:mo><db:mn>0</db:mn></db:math>—where <ib:math xmlns:ib=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ib:mi mathvariant=\\\"normal\\\">Ω</ib:mi></ib:math> is the generator of large gauge transformations—independently enforces <lb:math xmlns:lb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><lb:mover accent=\\\"true\\\"><lb:mi>θ</lb:mi><lb:mo stretchy=\\\"false\\\">¯</lb:mo></lb:mover><lb:mo>=</lb:mo><lb:mn>0</lb:mn></lb:math> (mod <pb:math xmlns:pb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><pb:mi>π</pb:mi></pb:math>), and that for complex quark mass matrix <rb:math xmlns:rb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><rb:mi>M</rb:mi></rb:math>, if a generalized parity operator <tb:math xmlns:tb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><tb:mi mathvariant=\\\"script\\\">P</tb:mi></tb:math> is a symmetry, then the value of <wb:math xmlns:wb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><wb:mi>θ</wb:mi></wb:math> gets determined so that it exactly cancels <yb:math xmlns:yb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><yb:mi>A</yb:mi><yb:mi>r</yb:mi><yb:mi>g</yb:mi><yb:mi>D</yb:mi><yb:mi>e</yb:mi><yb:mi>t</yb:mi><yb:mi>M</yb:mi></yb:math>, again giving θ</ac:mi></ac:mrow>¯</ac:mo></ac:mrow></ac:mover>=</ac:mo>0</ac:mn></ac:mtext>(</ac:mo>mod</ac:mi></ac:mtext></ac:mtext>π</ac:mi>)</ac:mo></ac:mrow></ac:math>. These results establish the equivalence of the Hamiltonian and Lagrangian approaches to the strong <gc:math xmlns:gc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gc:mi>C</gc:mi><gc:mi>P</gc:mi></gc:math> problem.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/bl6j-dt75\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/bl6j-dt75","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

利用哈密顿形式证明,如果宇称是QCD的良好对称性,则强CP相位θ¯必须为0或π。我们发现,对于P是一个物理对称,它必须离开希尔伯特空间Hθ与θ-真空不变量(P: Hθ→Hθ)相关联,这只有在θ=0或π时才有可能。我们还证明了形成不同θ扇区的态的线性组合只产生经典的统计混合,符合超选择规则,证实了Hθ是量子理论中最一般的希尔伯特空间。进一步,我们证明了要求[P,Ω]=0 (Ω是大规范变换的发生器)独立地强制θ¯=0(modπ),并且对于复夸克质量矩阵M,如果广义宇称算子P是对称的,则θ的值被确定,使其完全抵消ArgDetM,再次给出θ¯=0(modπ)。这些结果建立了强CP问题的哈密顿方法和拉格朗日方法的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong CP phase and parity in the Hamiltonian formalism
We show using the Hamiltonian formalism that if parity is a good symmetry of QCD, then the strong CP phase θ¯ must be 0 or π. We find that for P to be a physical symmetry, it must leave the Hilbert space Hθ associated with the θ-vacuum invariant (P: HθHθ), which is possible only for θ=0 or π. We also show that forming linear combinations of states from different θ sectors produces only classical statistical mixtures, consistent with superselection rules, confirming that Hθ is the most general Hilbert space for the quantum theory. Furthermore, we demonstrate that requiring [P,Ω]=0—where Ω is the generator of large gauge transformations—independently enforces θ¯=0 (mod π), and that for complex quark mass matrix M, if a generalized parity operator P is a symmetry, then the value of θ gets determined so that it exactly cancels ArgDetM, again giving θ¯=0(modπ). These results establish the equivalence of the Hamiltonian and Lagrangian approaches to the strong CP problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信