基于强耦合磁振子-声子系统的高灵敏度表面声波磁场传感器

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chong Chen, Mingyuan Ma, Weiqi Du, Zheng Sun, Deqi Tao, Lei Han, Sulei Fu, Feng Pan, Cheng Song
{"title":"基于强耦合磁振子-声子系统的高灵敏度表面声波磁场传感器","authors":"Chong Chen, Mingyuan Ma, Weiqi Du, Zheng Sun, Deqi Tao, Lei Han, Sulei Fu, Feng Pan, Cheng Song","doi":"10.1002/adfm.202518999","DOIUrl":null,"url":null,"abstract":"Strong coupling between quasiparticles enables breakthroughs in quantum technologies. Surface acoustic waves (SAWs), carrying coherent gigahertz‐frequency phonons, provide a platform to achieve strong coupling between SAW phonons and quasiparticles like magnons. SAWs devices also utilize the delta‐<jats:italic>E</jats:italic> or delta‐<jats:italic>G</jats:italic> effect for magnetic field sensing, achieving an ultra‐low limit of detection (LoD) down to tens of picotesla. Concomitant disadvantages include unidirectional response, millimeter size, complex structure, and fabrication still remain. The strong magnon‐phonon coupling has great potential to overcome these challenges for weak magnetic detection. Here, an ultra‐compact and highly sensitive SAW magnetic field sensor based on a strongly coupled magnon‐phonon system is demonstrated, featuring a thin FeGaB film embedded in an acoustic cavity. In the strong coupling regime, the SAW frequency exhibits anti‐crossing and responds dramatically to external magnetic fields, enabling high sensitivities. Notably, within the anti‐crossing region, a frequency sensitivity of 600 kHz/Oe and a phase sensitivity of 44 °/Oe are achieved. Combined with phase noise evaluation, the LoD is determined to be 126 pT/Hz<jats:sup>0.5</jats:sup> @ 10 Hz and 27 pT/Hz<jats:sup>0.5</jats:sup> @ 100 Hz. Besides its fundamental significance for hybrid quasiparticles, this work proposes a brand‐new sensing mechanism for developing miniaturized, highly sensitive, and low‐LoD SAW magnetic field sensors.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Sensitive Surface Acoustic Wave Magnetic Field Sensor Based on a Strongly Coupled Magnon‐Phonon System\",\"authors\":\"Chong Chen, Mingyuan Ma, Weiqi Du, Zheng Sun, Deqi Tao, Lei Han, Sulei Fu, Feng Pan, Cheng Song\",\"doi\":\"10.1002/adfm.202518999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strong coupling between quasiparticles enables breakthroughs in quantum technologies. Surface acoustic waves (SAWs), carrying coherent gigahertz‐frequency phonons, provide a platform to achieve strong coupling between SAW phonons and quasiparticles like magnons. SAWs devices also utilize the delta‐<jats:italic>E</jats:italic> or delta‐<jats:italic>G</jats:italic> effect for magnetic field sensing, achieving an ultra‐low limit of detection (LoD) down to tens of picotesla. Concomitant disadvantages include unidirectional response, millimeter size, complex structure, and fabrication still remain. The strong magnon‐phonon coupling has great potential to overcome these challenges for weak magnetic detection. Here, an ultra‐compact and highly sensitive SAW magnetic field sensor based on a strongly coupled magnon‐phonon system is demonstrated, featuring a thin FeGaB film embedded in an acoustic cavity. In the strong coupling regime, the SAW frequency exhibits anti‐crossing and responds dramatically to external magnetic fields, enabling high sensitivities. Notably, within the anti‐crossing region, a frequency sensitivity of 600 kHz/Oe and a phase sensitivity of 44 °/Oe are achieved. Combined with phase noise evaluation, the LoD is determined to be 126 pT/Hz<jats:sup>0.5</jats:sup> @ 10 Hz and 27 pT/Hz<jats:sup>0.5</jats:sup> @ 100 Hz. Besides its fundamental significance for hybrid quasiparticles, this work proposes a brand‐new sensing mechanism for developing miniaturized, highly sensitive, and low‐LoD SAW magnetic field sensors.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202518999\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202518999","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准粒子之间的强耦合使量子技术取得突破。表面声波携带相干千兆赫频率声子,为表面声波声子与磁振子等准粒子之间实现强耦合提供了平台。saw器件还利用delta - E或delta - G效应进行磁场传感,实现低至数十皮特斯拉的超低检测极限(LoD)。伴随而来的缺点包括单向响应、毫米尺寸、复杂的结构和制造仍然存在。强磁振子-声子耦合在弱磁探测中具有克服这些挑战的巨大潜力。在这里,展示了一种基于强耦合磁振子-声子系统的超紧凑和高灵敏度的声表面波磁场传感器,其特点是在声腔中嵌入薄FeGaB薄膜。在强耦合状态下,声呐频率表现出抗交叉特性,对外部磁场的响应显著,从而实现了高灵敏度。值得注意的是,在抗交叉区域内,频率灵敏度为600 kHz/Oe,相位灵敏度为44°/Oe。结合相位噪声评估,确定LoD为126 pT/Hz0.5 @ 10 Hz和27 pT/Hz0.5 @ 100 Hz。除了对杂化准粒子具有重要意义外,这项工作还为开发小型化、高灵敏度和低负载的SAW磁场传感器提供了一种全新的传感机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Sensitive Surface Acoustic Wave Magnetic Field Sensor Based on a Strongly Coupled Magnon‐Phonon System
Strong coupling between quasiparticles enables breakthroughs in quantum technologies. Surface acoustic waves (SAWs), carrying coherent gigahertz‐frequency phonons, provide a platform to achieve strong coupling between SAW phonons and quasiparticles like magnons. SAWs devices also utilize the delta‐E or delta‐G effect for magnetic field sensing, achieving an ultra‐low limit of detection (LoD) down to tens of picotesla. Concomitant disadvantages include unidirectional response, millimeter size, complex structure, and fabrication still remain. The strong magnon‐phonon coupling has great potential to overcome these challenges for weak magnetic detection. Here, an ultra‐compact and highly sensitive SAW magnetic field sensor based on a strongly coupled magnon‐phonon system is demonstrated, featuring a thin FeGaB film embedded in an acoustic cavity. In the strong coupling regime, the SAW frequency exhibits anti‐crossing and responds dramatically to external magnetic fields, enabling high sensitivities. Notably, within the anti‐crossing region, a frequency sensitivity of 600 kHz/Oe and a phase sensitivity of 44 °/Oe are achieved. Combined with phase noise evaluation, the LoD is determined to be 126 pT/Hz0.5 @ 10 Hz and 27 pT/Hz0.5 @ 100 Hz. Besides its fundamental significance for hybrid quasiparticles, this work proposes a brand‐new sensing mechanism for developing miniaturized, highly sensitive, and low‐LoD SAW magnetic field sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信