无膜CO2电解槽设计,经济高效的甲酸电合成。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiaotong Li,Kainan Gao,Mingliang Qu,Nanhui Li,Xiangzhou Lv,Xiuju Wu,Qingyang Lin,Hao Bin Wu
{"title":"无膜CO2电解槽设计,经济高效的甲酸电合成。","authors":"Xiaotong Li,Kainan Gao,Mingliang Qu,Nanhui Li,Xiangzhou Lv,Xiuju Wu,Qingyang Lin,Hao Bin Wu","doi":"10.1038/s41467-025-64306-0","DOIUrl":null,"url":null,"abstract":"Reducing the electrical energy consumption for formic acid electro-synthesis is indispensable for advancing its industrial implementation. In a conventional CO2 electrolyzer, most input electrical energy is consumed by the unprofitable anodic oxygen evolution reaction (OER) and ohmic drop. Electrolyzer engineering provides a promising platform to boost electrical energy utilization efficiency beyond catalyst optimization. Herein, we demonstrate a membrane-free CO2 electrolyzer design that pairs electrochemical CO2 reduction (CO2R) with an all-liquid-phase anodic reaction, enabling dual production of formate at both electrodes with significantly reduced cell voltage. The optimized design exhibits the lowest electrical energy consumption (< 310 kJ mol-1formate) at cell voltages below 2.7 V across a current density range of 0.05-0.4 A cm-2. This cell also maintains stable operation at 2.25 V for 313 h with a < 20 % increase in electrical energy consumption. Systematic techno-economic analysis (TEA) evaluates the economic viability of this design for formic acid electro-synthesis, revealing a potential roadmap towards low-cost formic acid production. This strategy provides guidelines for CO2R electrolyzer engineering toward energy-efficient, economically viable production of valuable chemicals.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"20 1","pages":"9237"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane-free CO2 electrolyzer design for economically efficient formic acid electro-synthesis.\",\"authors\":\"Xiaotong Li,Kainan Gao,Mingliang Qu,Nanhui Li,Xiangzhou Lv,Xiuju Wu,Qingyang Lin,Hao Bin Wu\",\"doi\":\"10.1038/s41467-025-64306-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing the electrical energy consumption for formic acid electro-synthesis is indispensable for advancing its industrial implementation. In a conventional CO2 electrolyzer, most input electrical energy is consumed by the unprofitable anodic oxygen evolution reaction (OER) and ohmic drop. Electrolyzer engineering provides a promising platform to boost electrical energy utilization efficiency beyond catalyst optimization. Herein, we demonstrate a membrane-free CO2 electrolyzer design that pairs electrochemical CO2 reduction (CO2R) with an all-liquid-phase anodic reaction, enabling dual production of formate at both electrodes with significantly reduced cell voltage. The optimized design exhibits the lowest electrical energy consumption (< 310 kJ mol-1formate) at cell voltages below 2.7 V across a current density range of 0.05-0.4 A cm-2. This cell also maintains stable operation at 2.25 V for 313 h with a < 20 % increase in electrical energy consumption. Systematic techno-economic analysis (TEA) evaluates the economic viability of this design for formic acid electro-synthesis, revealing a potential roadmap towards low-cost formic acid production. This strategy provides guidelines for CO2R electrolyzer engineering toward energy-efficient, economically viable production of valuable chemicals.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"20 1\",\"pages\":\"9237\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64306-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64306-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

降低甲酸电合成的电能消耗是推进甲酸电合成工业化的必要条件。在传统的CO2电解槽中,大部分输入电能被无利可图的阳极析氧反应(OER)和欧姆下降所消耗。电解槽工程提供了一个有前途的平台,以提高电能利用效率超越催化剂优化。在此,我们展示了一种无膜CO2电解槽设计,该电解槽将电化学CO2还原(CO2R)与全液相阳极反应相结合,从而在显着降低电池电压的情况下在两个电极上双重生产甲酸盐。优化后的设计在电池电压低于2.7 V、电流密度为0.05-0.4 a cm-2时具有最低的电能消耗(< 310 kJ mol-1甲酸)。该电池还能在2.25 V电压下稳定运行313小时,电能消耗增加< 20%。系统的技术经济分析(TEA)评估了该设计用于甲酸电合成的经济可行性,揭示了低成本甲酸生产的潜在路线图。该策略为CO2R电解槽工程朝着节能、经济可行的有价值化学品生产方向提供了指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Membrane-free CO2 electrolyzer design for economically efficient formic acid electro-synthesis.
Reducing the electrical energy consumption for formic acid electro-synthesis is indispensable for advancing its industrial implementation. In a conventional CO2 electrolyzer, most input electrical energy is consumed by the unprofitable anodic oxygen evolution reaction (OER) and ohmic drop. Electrolyzer engineering provides a promising platform to boost electrical energy utilization efficiency beyond catalyst optimization. Herein, we demonstrate a membrane-free CO2 electrolyzer design that pairs electrochemical CO2 reduction (CO2R) with an all-liquid-phase anodic reaction, enabling dual production of formate at both electrodes with significantly reduced cell voltage. The optimized design exhibits the lowest electrical energy consumption (< 310 kJ mol-1formate) at cell voltages below 2.7 V across a current density range of 0.05-0.4 A cm-2. This cell also maintains stable operation at 2.25 V for 313 h with a < 20 % increase in electrical energy consumption. Systematic techno-economic analysis (TEA) evaluates the economic viability of this design for formic acid electro-synthesis, revealing a potential roadmap towards low-cost formic acid production. This strategy provides guidelines for CO2R electrolyzer engineering toward energy-efficient, economically viable production of valuable chemicals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信