右美托咪定调节谷氨酸释放保存树突棘并减轻围手术期神经认知障碍小鼠模型的认知障碍。

IF 5.8 2区 医学 Q1 NEUROSCIENCES
Yan Zhang, Junzhao Li, Xueju Wang, Zhongyu Zhang, Shuai Long, Chuanyu Edward Li, Yan Liu, John Man Tak Chu, Raymond Chuen-Chung Chang, Gordon Tin-Chun Wong, Yong Zhang
{"title":"右美托咪定调节谷氨酸释放保存树突棘并减轻围手术期神经认知障碍小鼠模型的认知障碍。","authors":"Yan Zhang, Junzhao Li, Xueju Wang, Zhongyu Zhang, Shuai Long, Chuanyu Edward Li, Yan Liu, John Man Tak Chu, Raymond Chuen-Chung Chang, Gordon Tin-Chun Wong, Yong Zhang","doi":"10.1007/s12264-025-01518-w","DOIUrl":null,"url":null,"abstract":"<p><p>Perioperative neurocognitive disorders (PNDs) represent a significant challenge in the perioperative setting, while the pathophysiology of PNDs remains unclear. Utilizing a murine model of abdominal surgery, we found that abnormal glutamatergic neurotransmission in the medial prefrontal cortex (mPFC) and hippocampus contributes to postoperative cognitive impairments. Increases in the frequency of miniature excitatory postsynaptic currents in both the mPFC and CA1 neurons indicate enhanced presynaptic glutamate release while having little effect on inhibitory neurotransmission. Surgery also enhances glutamate release from presynaptic terminals in the Schaffer collateral pathway. In addition, abdominal surgery increased the activation of microglia and astrocytes, elevated central inflammatory markers, and reduced excitatory amino-acid transporter-2 expression. Dexmedetomidine significantly mitigates the postoperative cognitive deficits by reducing inflammation and preserving neuronal structural complexity and dendritic spine stability, likely through inhibiting glutamate release and enhancing its reuptake. These findings advance our understanding of the etiology of PNDs and provide hints for potential intervention.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of Glutamate Release by Dexmedetomidine Preserves Dendritic Spines and Alleviates Cognitive Impairment in a Murine Model of Perioperative Neurocognitive Disorder.\",\"authors\":\"Yan Zhang, Junzhao Li, Xueju Wang, Zhongyu Zhang, Shuai Long, Chuanyu Edward Li, Yan Liu, John Man Tak Chu, Raymond Chuen-Chung Chang, Gordon Tin-Chun Wong, Yong Zhang\",\"doi\":\"10.1007/s12264-025-01518-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perioperative neurocognitive disorders (PNDs) represent a significant challenge in the perioperative setting, while the pathophysiology of PNDs remains unclear. Utilizing a murine model of abdominal surgery, we found that abnormal glutamatergic neurotransmission in the medial prefrontal cortex (mPFC) and hippocampus contributes to postoperative cognitive impairments. Increases in the frequency of miniature excitatory postsynaptic currents in both the mPFC and CA1 neurons indicate enhanced presynaptic glutamate release while having little effect on inhibitory neurotransmission. Surgery also enhances glutamate release from presynaptic terminals in the Schaffer collateral pathway. In addition, abdominal surgery increased the activation of microglia and astrocytes, elevated central inflammatory markers, and reduced excitatory amino-acid transporter-2 expression. Dexmedetomidine significantly mitigates the postoperative cognitive deficits by reducing inflammation and preserving neuronal structural complexity and dendritic spine stability, likely through inhibiting glutamate release and enhancing its reuptake. These findings advance our understanding of the etiology of PNDs and provide hints for potential intervention.</p>\",\"PeriodicalId\":19314,\"journal\":{\"name\":\"Neuroscience bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12264-025-01518-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01518-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

围手术期神经认知障碍(PNDs)是围手术期环境中的一个重大挑战,而PNDs的病理生理学尚不清楚。利用小鼠腹部手术模型,我们发现内侧前额叶皮层(mPFC)和海马的谷氨酸能神经传递异常与术后认知障碍有关。mPFC和CA1神经元中微型兴奋性突触后电流频率的增加表明突触前谷氨酸释放增强,但对抑制性神经传递几乎没有影响。手术也能增强Schaffer侧支通路突触前末端的谷氨酸释放。此外,腹部手术增加了小胶质细胞和星形胶质细胞的激活,升高了中枢炎症标志物,降低了兴奋性氨基酸转运蛋白-2的表达。右美托咪定可能通过抑制谷氨酸释放和增强其再摄取,通过减少炎症和保持神经元结构复杂性和树突脊柱稳定性,显著减轻术后认知缺陷。这些发现促进了我们对PNDs病因学的理解,并为潜在的干预提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulation of Glutamate Release by Dexmedetomidine Preserves Dendritic Spines and Alleviates Cognitive Impairment in a Murine Model of Perioperative Neurocognitive Disorder.

Perioperative neurocognitive disorders (PNDs) represent a significant challenge in the perioperative setting, while the pathophysiology of PNDs remains unclear. Utilizing a murine model of abdominal surgery, we found that abnormal glutamatergic neurotransmission in the medial prefrontal cortex (mPFC) and hippocampus contributes to postoperative cognitive impairments. Increases in the frequency of miniature excitatory postsynaptic currents in both the mPFC and CA1 neurons indicate enhanced presynaptic glutamate release while having little effect on inhibitory neurotransmission. Surgery also enhances glutamate release from presynaptic terminals in the Schaffer collateral pathway. In addition, abdominal surgery increased the activation of microglia and astrocytes, elevated central inflammatory markers, and reduced excitatory amino-acid transporter-2 expression. Dexmedetomidine significantly mitigates the postoperative cognitive deficits by reducing inflammation and preserving neuronal structural complexity and dendritic spine stability, likely through inhibiting glutamate release and enhancing its reuptake. These findings advance our understanding of the etiology of PNDs and provide hints for potential intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信