Saman, Abu Baker Siddique, Bilal Aslam, Zeeshan Nawaz
{"title":"尿路致病性大肠杆菌的生物膜形成和抗生素耐药性:分子表征和抗生素谱研究。","authors":"Saman, Abu Baker Siddique, Bilal Aslam, Zeeshan Nawaz","doi":"10.1177/10766294251389587","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilm formation is a key virulence factor in urinary tract infections, and <i>Escherichia coli (E. coli)</i> serves as a prominent causative agent, more resistant to antimicrobial agents. This study focused on isolation and phenotypic and genotypic characterization of <i>E. coli</i> from urine samples on the basis of their biofilm-forming capacity. In the present study, a total of 804 human urine samples were collected from different clinical facilities of Faisalabad. After phenotypic and genotypic affirmation, biofilm forming potential of uropathogenic <i>E. coli</i> (UPEC) was determined by using microtiter plate assay (MPA) and the Congo red agar method. Antimicrobial susceptibility testing was conducted, and a comparison was executed between biofilm formers and non-formers. Biofilm production by the MPA and Congo red agar methods was 88% and 68%, respectively. UPEC isolates showed maximum resistance to amoxicillin-clavulanate (97%), cefoparazone (93%), cefotaxime (91%), and ampicillin (90%). Significant association between resistance to antibiotic and biofilm formation with <i>p</i> value <0.05 was observed in case of piperacillin-tazobactam, imipenem, meropenem, amikacin, norfloxacin, nitrofurantoin, polymyxin B, and nalidixic acid. Biofilm producer strains were progressed for molecular characterization using polymerase chain reaction for biofilm-forming genes including <i>fim</i>H, <i>csg</i>A, <i>bcs</i>A, <i>agn</i>43, <i>pap</i>C, and <i>foc</i>G, which showed prevalence of 89% (118/132), 87% (116/132), 86% (114/132), 81% (107/132), 47% (61/132), and 33% (43/132), respectively.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofilm Formation and Antibiotic Resistance in Uropathogenic <i>Escherichia coli</i>: A Molecular Characterization and Antibiogram Study.\",\"authors\":\"Saman, Abu Baker Siddique, Bilal Aslam, Zeeshan Nawaz\",\"doi\":\"10.1177/10766294251389587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofilm formation is a key virulence factor in urinary tract infections, and <i>Escherichia coli (E. coli)</i> serves as a prominent causative agent, more resistant to antimicrobial agents. This study focused on isolation and phenotypic and genotypic characterization of <i>E. coli</i> from urine samples on the basis of their biofilm-forming capacity. In the present study, a total of 804 human urine samples were collected from different clinical facilities of Faisalabad. After phenotypic and genotypic affirmation, biofilm forming potential of uropathogenic <i>E. coli</i> (UPEC) was determined by using microtiter plate assay (MPA) and the Congo red agar method. Antimicrobial susceptibility testing was conducted, and a comparison was executed between biofilm formers and non-formers. Biofilm production by the MPA and Congo red agar methods was 88% and 68%, respectively. UPEC isolates showed maximum resistance to amoxicillin-clavulanate (97%), cefoparazone (93%), cefotaxime (91%), and ampicillin (90%). Significant association between resistance to antibiotic and biofilm formation with <i>p</i> value <0.05 was observed in case of piperacillin-tazobactam, imipenem, meropenem, amikacin, norfloxacin, nitrofurantoin, polymyxin B, and nalidixic acid. Biofilm producer strains were progressed for molecular characterization using polymerase chain reaction for biofilm-forming genes including <i>fim</i>H, <i>csg</i>A, <i>bcs</i>A, <i>agn</i>43, <i>pap</i>C, and <i>foc</i>G, which showed prevalence of 89% (118/132), 87% (116/132), 86% (114/132), 81% (107/132), 47% (61/132), and 33% (43/132), respectively.</p>\",\"PeriodicalId\":18701,\"journal\":{\"name\":\"Microbial drug resistance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial drug resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10766294251389587\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10766294251389587","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Biofilm Formation and Antibiotic Resistance in Uropathogenic Escherichia coli: A Molecular Characterization and Antibiogram Study.
Biofilm formation is a key virulence factor in urinary tract infections, and Escherichia coli (E. coli) serves as a prominent causative agent, more resistant to antimicrobial agents. This study focused on isolation and phenotypic and genotypic characterization of E. coli from urine samples on the basis of their biofilm-forming capacity. In the present study, a total of 804 human urine samples were collected from different clinical facilities of Faisalabad. After phenotypic and genotypic affirmation, biofilm forming potential of uropathogenic E. coli (UPEC) was determined by using microtiter plate assay (MPA) and the Congo red agar method. Antimicrobial susceptibility testing was conducted, and a comparison was executed between biofilm formers and non-formers. Biofilm production by the MPA and Congo red agar methods was 88% and 68%, respectively. UPEC isolates showed maximum resistance to amoxicillin-clavulanate (97%), cefoparazone (93%), cefotaxime (91%), and ampicillin (90%). Significant association between resistance to antibiotic and biofilm formation with p value <0.05 was observed in case of piperacillin-tazobactam, imipenem, meropenem, amikacin, norfloxacin, nitrofurantoin, polymyxin B, and nalidixic acid. Biofilm producer strains were progressed for molecular characterization using polymerase chain reaction for biofilm-forming genes including fimH, csgA, bcsA, agn43, papC, and focG, which showed prevalence of 89% (118/132), 87% (116/132), 86% (114/132), 81% (107/132), 47% (61/132), and 33% (43/132), respectively.
期刊介绍:
Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports.
MDR coverage includes:
Molecular biology of resistance mechanisms
Virulence genes and disease
Molecular epidemiology
Drug design
Infection control.