由电子离域介导的热离子迁移实现的高温氧化陶瓷微波吸收体。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ruopeng Cui, Zewen Duan, Yi Li, Xuefei Zhang, Xiangyang Liu, Guang Yang, Lihong Yang, Biao Zhao, Chunlei Wan
{"title":"由电子离域介导的热离子迁移实现的高温氧化陶瓷微波吸收体。","authors":"Ruopeng Cui, Zewen Duan, Yi Li, Xuefei Zhang, Xiangyang Liu, Guang Yang, Lihong Yang, Biao Zhao, Chunlei Wan","doi":"10.1038/s41467-025-64208-1","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating demand for long-term high-temperature microwave-absorbing materials (HTMAMs) in high-speed aerospace stealth is hindered by limitations such as magnetic loss degradation or oxidation risks. Herein, we introduce rare earth zirconate ceramics that exhibit air stability up to 1600 °C. Abundant oxygen vacancies significantly enhance permittivity and thus microwave-absorbing performance through activated thermionic migration at elevated temperatures. Moreover, the thermionic-facilitated permittivity can be meticulously modulated by electron delocalization, with the extent governed by lattice disorder. We demonstrate this concept through a dual-layer Er<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>/Gd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> structure to further optimize impedance matching, achieving an ultra-wide bandwidth (8.27 GHz) and strong absorption (-64.61 dB) at ultrathin thicknesses under 1.2 mm at 600 °C mainly by macroscopic interfacial resonance, alongside an ultralow thermal conductivity (1.61 W•m<sup>-1</sup>•K<sup>-1</sup>). This work presents an innovative approach to design high-performance and anti-oxidative HTMAMs through thermionic migration tuned by electron delocalization, advancing structural-functional integrated materials for extreme environments.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"9179"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533133/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-temperature oxide ceramic microwave absorber enabled by thermionic migration mediated by electron delocalization.\",\"authors\":\"Ruopeng Cui, Zewen Duan, Yi Li, Xuefei Zhang, Xiangyang Liu, Guang Yang, Lihong Yang, Biao Zhao, Chunlei Wan\",\"doi\":\"10.1038/s41467-025-64208-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The escalating demand for long-term high-temperature microwave-absorbing materials (HTMAMs) in high-speed aerospace stealth is hindered by limitations such as magnetic loss degradation or oxidation risks. Herein, we introduce rare earth zirconate ceramics that exhibit air stability up to 1600 °C. Abundant oxygen vacancies significantly enhance permittivity and thus microwave-absorbing performance through activated thermionic migration at elevated temperatures. Moreover, the thermionic-facilitated permittivity can be meticulously modulated by electron delocalization, with the extent governed by lattice disorder. We demonstrate this concept through a dual-layer Er<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>/Gd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> structure to further optimize impedance matching, achieving an ultra-wide bandwidth (8.27 GHz) and strong absorption (-64.61 dB) at ultrathin thicknesses under 1.2 mm at 600 °C mainly by macroscopic interfacial resonance, alongside an ultralow thermal conductivity (1.61 W•m<sup>-1</sup>•K<sup>-1</sup>). This work presents an innovative approach to design high-performance and anti-oxidative HTMAMs through thermionic migration tuned by electron delocalization, advancing structural-functional integrated materials for extreme environments.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"9179\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533133/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64208-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64208-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高速航空航天隐身对长期高温微波吸收材料(HTMAMs)的需求不断增长,但磁性损耗降解或氧化风险等限制阻碍了HTMAMs的发展。在这里,我们介绍稀土锆酸盐陶瓷,表现出高达1600°C的空气稳定性。丰富的氧空位显著提高介电常数,从而通过激活热离子迁移在高温下的微波吸收性能。此外,热激介电常数可以通过电子离域精细调制,其程度由晶格无序控制。我们通过双层Er2Zr2O7/Gd2Zr2O7结构验证了这一概念,以进一步优化阻抗匹配,在600°C下,主要通过宏观界面共振实现了超宽带宽(8.27 GHz)和超薄厚度(1.2 mm)下的强吸收(-64.61 dB),以及超低导热系数(1.61 W•m-1•K-1)。这项工作提出了一种创新的方法来设计高性能和抗氧化HTMAMs,通过电子离域调节热离子迁移,推进极端环境下的结构功能集成材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-temperature oxide ceramic microwave absorber enabled by thermionic migration mediated by electron delocalization.

The escalating demand for long-term high-temperature microwave-absorbing materials (HTMAMs) in high-speed aerospace stealth is hindered by limitations such as magnetic loss degradation or oxidation risks. Herein, we introduce rare earth zirconate ceramics that exhibit air stability up to 1600 °C. Abundant oxygen vacancies significantly enhance permittivity and thus microwave-absorbing performance through activated thermionic migration at elevated temperatures. Moreover, the thermionic-facilitated permittivity can be meticulously modulated by electron delocalization, with the extent governed by lattice disorder. We demonstrate this concept through a dual-layer Er2Zr2O7/Gd2Zr2O7 structure to further optimize impedance matching, achieving an ultra-wide bandwidth (8.27 GHz) and strong absorption (-64.61 dB) at ultrathin thicknesses under 1.2 mm at 600 °C mainly by macroscopic interfacial resonance, alongside an ultralow thermal conductivity (1.61 W•m-1•K-1). This work presents an innovative approach to design high-performance and anti-oxidative HTMAMs through thermionic migration tuned by electron delocalization, advancing structural-functional integrated materials for extreme environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信