缺血性脑卒中的个体化处方推断。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dominic Giles, Chris Foulon, Guilherme Pombo, James K Ruffle, Tianbo Xu, H Rolf Jäger, Jorge Cardoso, Sebastien Ourselin, Geraint Rees, Ashwani Jha, Parashkev Nachev
{"title":"缺血性脑卒中的个体化处方推断。","authors":"Dominic Giles, Chris Foulon, Guilherme Pombo, James K Ruffle, Tianbo Xu, H Rolf Jäger, Jorge Cardoso, Sebastien Ourselin, Geraint Rees, Ashwani Jha, Parashkev Nachev","doi":"10.1038/s41467-025-64593-7","DOIUrl":null,"url":null,"abstract":"<p><p>The gold standard in the treatment of ischaemic stroke is set by evidence from randomized controlled trials, typically using simple estimands of presumptively homogeneous populations. Yet the manifest complexity of the brain's functional, connective, and vascular architectures introduces heterogeneities that violate the underlying statistical premisses, potentially leading to substantial errors at both individual and population levels. The counterfactual nature of interventional inference renders quantifying the impact of this defect difficult. Here we conduct a comprehensive series of semi-synthetic, biologically plausible, virtual interventional trials across 100M+ distinct simulations. We generate empirically grounded virtual trial data from large-scale meta-analytic connective, functional, genetic expression, and receptor distribution data, with high-resolution maps of 4K+ acute ischaemic lesions. Within each trial, we estimate treatment effects using models varying in complexity, in the presence of increasingly confounded outcomes and noisy treatment responses. Individualized prescriptions inferred from simple models, fitted to unconfounded data, are less accurate than those from complex models, even when fitted to confounded data. Our results indicate that complex modelling with richly represented lesion data may substantively enhance individualized prescriptive inference in ischaemic stroke.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8968"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12531334/pdf/","citationCount":"0","resultStr":"{\"title\":\"Individualized prescriptive inference in ischaemic stroke.\",\"authors\":\"Dominic Giles, Chris Foulon, Guilherme Pombo, James K Ruffle, Tianbo Xu, H Rolf Jäger, Jorge Cardoso, Sebastien Ourselin, Geraint Rees, Ashwani Jha, Parashkev Nachev\",\"doi\":\"10.1038/s41467-025-64593-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gold standard in the treatment of ischaemic stroke is set by evidence from randomized controlled trials, typically using simple estimands of presumptively homogeneous populations. Yet the manifest complexity of the brain's functional, connective, and vascular architectures introduces heterogeneities that violate the underlying statistical premisses, potentially leading to substantial errors at both individual and population levels. The counterfactual nature of interventional inference renders quantifying the impact of this defect difficult. Here we conduct a comprehensive series of semi-synthetic, biologically plausible, virtual interventional trials across 100M+ distinct simulations. We generate empirically grounded virtual trial data from large-scale meta-analytic connective, functional, genetic expression, and receptor distribution data, with high-resolution maps of 4K+ acute ischaemic lesions. Within each trial, we estimate treatment effects using models varying in complexity, in the presence of increasingly confounded outcomes and noisy treatment responses. Individualized prescriptions inferred from simple models, fitted to unconfounded data, are less accurate than those from complex models, even when fitted to confounded data. Our results indicate that complex modelling with richly represented lesion data may substantively enhance individualized prescriptive inference in ischaemic stroke.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"8968\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12531334/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64593-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64593-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

缺血性中风治疗的黄金标准是由随机对照试验的证据确定的,通常是对假设的同质人群进行简单估计。然而,大脑功能、连接和血管结构的明显复杂性引入了异质性,违反了潜在的统计前提,可能导致个人和群体水平上的重大错误。介入推理的反事实性质使得量化这一缺陷的影响变得困难。在这里,我们进行了一系列全面的半合成、生物学上合理的虚拟介入试验,跨越了100多万个不同的模拟。我们从大规模荟萃分析的结缔组织、功能、基因表达和受体分布数据中生成基于经验的虚拟试验数据,并使用4K+急性缺血性病变的高分辨率地图。在每项试验中,我们使用复杂程度不同的模型来估计治疗效果,其中存在越来越多的混淆结果和嘈杂的治疗反应。从简单模型中推断出的个体化处方,与未混淆的数据相适应,不如从复杂模型中推断出的处方准确,即使是在与混淆的数据相适应时也是如此。我们的研究结果表明,具有丰富表征病变数据的复杂建模可以大大增强缺血性卒中的个体化处方推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Individualized prescriptive inference in ischaemic stroke.

The gold standard in the treatment of ischaemic stroke is set by evidence from randomized controlled trials, typically using simple estimands of presumptively homogeneous populations. Yet the manifest complexity of the brain's functional, connective, and vascular architectures introduces heterogeneities that violate the underlying statistical premisses, potentially leading to substantial errors at both individual and population levels. The counterfactual nature of interventional inference renders quantifying the impact of this defect difficult. Here we conduct a comprehensive series of semi-synthetic, biologically plausible, virtual interventional trials across 100M+ distinct simulations. We generate empirically grounded virtual trial data from large-scale meta-analytic connective, functional, genetic expression, and receptor distribution data, with high-resolution maps of 4K+ acute ischaemic lesions. Within each trial, we estimate treatment effects using models varying in complexity, in the presence of increasingly confounded outcomes and noisy treatment responses. Individualized prescriptions inferred from simple models, fitted to unconfounded data, are less accurate than those from complex models, even when fitted to confounded data. Our results indicate that complex modelling with richly represented lesion data may substantively enhance individualized prescriptive inference in ischaemic stroke.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信