前额叶-纹状体网络强化学习策略的丘脑调节。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Bin A Wang, Mien Brabeeba Wang, Norman H Lam, Liu Mengxing, Shumei Li, Ralf D Wimmer, Pedro M Paz-Alonso, Michael M Halassa, Burkhard Pleger
{"title":"前额叶-纹状体网络强化学习策略的丘脑调节。","authors":"Bin A Wang, Mien Brabeeba Wang, Norman H Lam, Liu Mengxing, Shumei Li, Ralf D Wimmer, Pedro M Paz-Alonso, Michael M Halassa, Burkhard Pleger","doi":"10.1038/s41467-025-63995-x","DOIUrl":null,"url":null,"abstract":"<p><p>Human decision-making involves model-free and model-based reinforcement learning (RL) strategies, largely implemented by prefrontal-striatal circuits. Combining human brain imaging with neural network modelling in a probabilistic reversal learning task, we identify a unique role for the mediodorsal thalamus (MD) in arbitrating between RL strategies. While both dorsal PFC and the striatum support rule switching, the former does so when subjects predominantly adopt model-based strategy, and the latter model-free. The lateral and medial subdivisions of MD likewise engage these modes, each with distinct PFC connectivity. Notably, prefrontal transthalamic processing increases during the shift from stable rule use to model-based updating, with model-free updates at intermediate levels. Our CogLinks model shows that model-free strategies emerge when prefrontal-thalamic mechanisms for context inference fail, resulting in a slower overwriting of prefrontal strategy representations - a phenomenon we empirically validate with fMRI decoding analysis. These findings reveal how prefrontal transthalamic pathways implement flexible RL-based cognition.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"9095"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12531340/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thalamic regulation of reinforcement learning strategies across prefrontal-striatal networks.\",\"authors\":\"Bin A Wang, Mien Brabeeba Wang, Norman H Lam, Liu Mengxing, Shumei Li, Ralf D Wimmer, Pedro M Paz-Alonso, Michael M Halassa, Burkhard Pleger\",\"doi\":\"10.1038/s41467-025-63995-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human decision-making involves model-free and model-based reinforcement learning (RL) strategies, largely implemented by prefrontal-striatal circuits. Combining human brain imaging with neural network modelling in a probabilistic reversal learning task, we identify a unique role for the mediodorsal thalamus (MD) in arbitrating between RL strategies. While both dorsal PFC and the striatum support rule switching, the former does so when subjects predominantly adopt model-based strategy, and the latter model-free. The lateral and medial subdivisions of MD likewise engage these modes, each with distinct PFC connectivity. Notably, prefrontal transthalamic processing increases during the shift from stable rule use to model-based updating, with model-free updates at intermediate levels. Our CogLinks model shows that model-free strategies emerge when prefrontal-thalamic mechanisms for context inference fail, resulting in a slower overwriting of prefrontal strategy representations - a phenomenon we empirically validate with fMRI decoding analysis. These findings reveal how prefrontal transthalamic pathways implement flexible RL-based cognition.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"9095\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12531340/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63995-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63995-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人类决策包括无模型和基于模型的强化学习(RL)策略,主要由前额叶-纹状体回路实现。在概率反转学习任务中,我们将人脑成像与神经网络建模相结合,确定了中腰丘脑(MD)在RL策略之间的仲裁中的独特作用。虽然背侧PFC和纹状体都支持规则切换,但当受试者主要采用基于模型的策略时,前者支持规则切换,而后者不支持模型切换。MD的外侧和内侧细分同样涉及这些模式,每个模式都有不同的PFC连接。值得注意的是,在从稳定的规则使用到基于模型的更新的转变过程中,前额叶跨丘脑处理增加,中间水平的更新是无模型的。我们的CogLinks模型显示,当前额叶-丘脑上下文推理机制失效时,无模型策略就会出现,导致前额叶策略表征的覆盖速度变慢——我们通过fMRI解码分析对这一现象进行了实证验证。这些发现揭示了前额叶经丘脑通路如何实现灵活的基于rl的认知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thalamic regulation of reinforcement learning strategies across prefrontal-striatal networks.

Human decision-making involves model-free and model-based reinforcement learning (RL) strategies, largely implemented by prefrontal-striatal circuits. Combining human brain imaging with neural network modelling in a probabilistic reversal learning task, we identify a unique role for the mediodorsal thalamus (MD) in arbitrating between RL strategies. While both dorsal PFC and the striatum support rule switching, the former does so when subjects predominantly adopt model-based strategy, and the latter model-free. The lateral and medial subdivisions of MD likewise engage these modes, each with distinct PFC connectivity. Notably, prefrontal transthalamic processing increases during the shift from stable rule use to model-based updating, with model-free updates at intermediate levels. Our CogLinks model shows that model-free strategies emerge when prefrontal-thalamic mechanisms for context inference fail, resulting in a slower overwriting of prefrontal strategy representations - a phenomenon we empirically validate with fMRI decoding analysis. These findings reveal how prefrontal transthalamic pathways implement flexible RL-based cognition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信