Yu Fu, Yulan Huang, Yunjiao Wang, Zhenlan Fu, Wenyun Cai, Lu Wang, Yuchun Wu, Xing Zhou, Zhongyi Ma, Zhigang Xu, Yaqin Tang, Jing Xie, Jiayun Jiang, Robert J Lee, Chong Li
{"title":"病毒激发的脂肽衍生核酸递送软骨用于骨关节炎治疗。","authors":"Yu Fu, Yulan Huang, Yunjiao Wang, Zhenlan Fu, Wenyun Cai, Lu Wang, Yuchun Wu, Xing Zhou, Zhongyi Ma, Zhigang Xu, Yaqin Tang, Jing Xie, Jiayun Jiang, Robert J Lee, Chong Li","doi":"10.1038/s41467-025-64212-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cartilage-targeted gene therapy is promising for osteoarthritis (OA) treatment, though its potency critically depends on the effectiveness of delivery vectors. Here, we modularly develop a series of non-pathogenic, virus-inspired lipopeptide-based nanoparticles (VPN) tailored to deliver nucleic acids to cartilage. The cationic moiety of lipopeptide with variable arginine and histidine residues is the key functional component, and screened by in vitro performance. The optimized VPN-2 with a moiety of -[(R)<sub>5</sub>-(H)<sub>4</sub>]<sub>2</sub>- facilitates sufficient endocytosis and effective lysosomal escape, achieving about 2.5-fold improvement in transfection potency over conventional lipid nanoparticles. To address the tradeoff between penetration and retention within articular cartilage, si-VPN-2 is further formulated into ROS-responsive nano-in-gel system, which turns out to alleviate cartilage degeneration in surgical ACTL mice, and further synergizes with methylprednisolone to implement superior joint protection in PTOA mice. Our study underscores the platform's potential of VPN as cartilage-targeted RNA delivery vector for innovative OA therapy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"9184"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533185/pdf/","citationCount":"0","resultStr":"{\"title\":\"Virus-inspired lipopeptide-derived nucleic acid delivery to cartilage for osteoarthritis therapy.\",\"authors\":\"Yu Fu, Yulan Huang, Yunjiao Wang, Zhenlan Fu, Wenyun Cai, Lu Wang, Yuchun Wu, Xing Zhou, Zhongyi Ma, Zhigang Xu, Yaqin Tang, Jing Xie, Jiayun Jiang, Robert J Lee, Chong Li\",\"doi\":\"10.1038/s41467-025-64212-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cartilage-targeted gene therapy is promising for osteoarthritis (OA) treatment, though its potency critically depends on the effectiveness of delivery vectors. Here, we modularly develop a series of non-pathogenic, virus-inspired lipopeptide-based nanoparticles (VPN) tailored to deliver nucleic acids to cartilage. The cationic moiety of lipopeptide with variable arginine and histidine residues is the key functional component, and screened by in vitro performance. The optimized VPN-2 with a moiety of -[(R)<sub>5</sub>-(H)<sub>4</sub>]<sub>2</sub>- facilitates sufficient endocytosis and effective lysosomal escape, achieving about 2.5-fold improvement in transfection potency over conventional lipid nanoparticles. To address the tradeoff between penetration and retention within articular cartilage, si-VPN-2 is further formulated into ROS-responsive nano-in-gel system, which turns out to alleviate cartilage degeneration in surgical ACTL mice, and further synergizes with methylprednisolone to implement superior joint protection in PTOA mice. Our study underscores the platform's potential of VPN as cartilage-targeted RNA delivery vector for innovative OA therapy.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"9184\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533185/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64212-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64212-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Virus-inspired lipopeptide-derived nucleic acid delivery to cartilage for osteoarthritis therapy.
Cartilage-targeted gene therapy is promising for osteoarthritis (OA) treatment, though its potency critically depends on the effectiveness of delivery vectors. Here, we modularly develop a series of non-pathogenic, virus-inspired lipopeptide-based nanoparticles (VPN) tailored to deliver nucleic acids to cartilage. The cationic moiety of lipopeptide with variable arginine and histidine residues is the key functional component, and screened by in vitro performance. The optimized VPN-2 with a moiety of -[(R)5-(H)4]2- facilitates sufficient endocytosis and effective lysosomal escape, achieving about 2.5-fold improvement in transfection potency over conventional lipid nanoparticles. To address the tradeoff between penetration and retention within articular cartilage, si-VPN-2 is further formulated into ROS-responsive nano-in-gel system, which turns out to alleviate cartilage degeneration in surgical ACTL mice, and further synergizes with methylprednisolone to implement superior joint protection in PTOA mice. Our study underscores the platform's potential of VPN as cartilage-targeted RNA delivery vector for innovative OA therapy.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.