TUBA8通过其40号丙氨酸促进神经元树突发育。

IF 5.9 2区 生物学 Q2 CELL BIOLOGY
Fengxia Shao, Huaqing Xue, Boran Chang, Yanling Liu, Suhao Cao, Jinsong Li, Xu Zhang, Lei Diao, Lan Bao
{"title":"TUBA8通过其40号丙氨酸促进神经元树突发育。","authors":"Fengxia Shao, Huaqing Xue, Boran Chang, Yanling Liu, Suhao Cao, Jinsong Li, Xu Zhang, Lei Diao, Lan Bao","doi":"10.1093/jmcb/mjaf036","DOIUrl":null,"url":null,"abstract":"<p><p>The functional specificity of tubulin isotypes has been demonstrated by various neurological diseases caused by an increasing number of mutations in tubulin isotypes. TUBA8 is specifically localized in cerebellar Purkinje cells, which exhibit the most elaborate dendritic trees in the central nervous system. However, the role and related molecular mechanism of TUBA8 in regulating neuronal dendritic morphology remain poorly understood. Here, we report that TUBA8 is required for neuronal dendrite development. As the most divergent member in α-tubulin isotypes, the expression of TUBA8 in Purkinje cells starts at P0, plateaus at P10 and sustains into adulthood. Loss of TUBA8 in Purkinje cells induces global dendritic height defects in multiple lobules during development and aging. Meanwhile, TUBA8 deficiency causes age-dependent decreased locomotor activity and anxiety-like behavior. In contrast to TUBA8, TUBA4A, another tubulin isotype highly expressed in Purkinje cells, is not required for dendrite development. Furthermore, the 40th alanine, which differs with any other α-tubulin isotype and cannot be modified by acetylation, methylation or lactylation, mediates the promoting effect of TUBA8 in neuronal dendrite development. This study reveals a specific role of TUBA8 in regulating neuronal dendritic morphology and highlights the importance of 40th amino acid in implementing functions of α-tubulin isotypes.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TUBA8 promotes neuronal dendrite development through its 40th alanine.\",\"authors\":\"Fengxia Shao, Huaqing Xue, Boran Chang, Yanling Liu, Suhao Cao, Jinsong Li, Xu Zhang, Lei Diao, Lan Bao\",\"doi\":\"10.1093/jmcb/mjaf036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The functional specificity of tubulin isotypes has been demonstrated by various neurological diseases caused by an increasing number of mutations in tubulin isotypes. TUBA8 is specifically localized in cerebellar Purkinje cells, which exhibit the most elaborate dendritic trees in the central nervous system. However, the role and related molecular mechanism of TUBA8 in regulating neuronal dendritic morphology remain poorly understood. Here, we report that TUBA8 is required for neuronal dendrite development. As the most divergent member in α-tubulin isotypes, the expression of TUBA8 in Purkinje cells starts at P0, plateaus at P10 and sustains into adulthood. Loss of TUBA8 in Purkinje cells induces global dendritic height defects in multiple lobules during development and aging. Meanwhile, TUBA8 deficiency causes age-dependent decreased locomotor activity and anxiety-like behavior. In contrast to TUBA8, TUBA4A, another tubulin isotype highly expressed in Purkinje cells, is not required for dendrite development. Furthermore, the 40th alanine, which differs with any other α-tubulin isotype and cannot be modified by acetylation, methylation or lactylation, mediates the promoting effect of TUBA8 in neuronal dendrite development. This study reveals a specific role of TUBA8 in regulating neuronal dendritic morphology and highlights the importance of 40th amino acid in implementing functions of α-tubulin isotypes.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjaf036\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjaf036","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微管蛋白同型的功能特异性已被各种由微管蛋白同型突变数量增加引起的神经系统疾病所证明。TUBA8特异地定位于小脑浦肯野细胞,这种细胞在中枢神经系统中表现出最复杂的树突状树。然而,对TUBA8在调节神经元树突形态中的作用及其相关分子机制尚不清楚。在这里,我们报道TUBA8是神经元树突发育所必需的。TUBA8是α-微管蛋白同型中分化最广的成员,其在浦肯野细胞中的表达从P0开始,在P10趋于平稳,并持续到成年期。浦肯野细胞中TUBA8的缺失会在发育和衰老过程中引起多个小叶的全局树突高度缺陷。同时,TUBA8缺乏导致年龄依赖性的运动活动减少和焦虑样行为。与TUBA8相反,另一种在浦肯野细胞中高度表达的微管蛋白同型TUBA4A并不是树突发育所必需的。此外,与其他α-微管蛋白同型不同,40号丙氨酸不能被乙酰化、甲基化或乳酸化修饰,它介导了TUBA8对神经元树突发育的促进作用。本研究揭示了TUBA8在调节神经元树突形态中的特定作用,并强调了第40个氨基酸在实现α-微管蛋白同型的功能中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TUBA8 promotes neuronal dendrite development through its 40th alanine.

The functional specificity of tubulin isotypes has been demonstrated by various neurological diseases caused by an increasing number of mutations in tubulin isotypes. TUBA8 is specifically localized in cerebellar Purkinje cells, which exhibit the most elaborate dendritic trees in the central nervous system. However, the role and related molecular mechanism of TUBA8 in regulating neuronal dendritic morphology remain poorly understood. Here, we report that TUBA8 is required for neuronal dendrite development. As the most divergent member in α-tubulin isotypes, the expression of TUBA8 in Purkinje cells starts at P0, plateaus at P10 and sustains into adulthood. Loss of TUBA8 in Purkinje cells induces global dendritic height defects in multiple lobules during development and aging. Meanwhile, TUBA8 deficiency causes age-dependent decreased locomotor activity and anxiety-like behavior. In contrast to TUBA8, TUBA4A, another tubulin isotype highly expressed in Purkinje cells, is not required for dendrite development. Furthermore, the 40th alanine, which differs with any other α-tubulin isotype and cannot be modified by acetylation, methylation or lactylation, mediates the promoting effect of TUBA8 in neuronal dendrite development. This study reveals a specific role of TUBA8 in regulating neuronal dendritic morphology and highlights the importance of 40th amino acid in implementing functions of α-tubulin isotypes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信