铁掺杂相变纳米液滴在光热和饥饿增强铁下垂癌症治疗中的协同作用。

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yuhang Tian, Xiang He, Yanchi Yuan, Chunyue Wang, Mengchi Zhang, Hui Jiang, Huajing Yang, Kuikun Yang, Hui Jing
{"title":"铁掺杂相变纳米液滴在光热和饥饿增强铁下垂癌症治疗中的协同作用。","authors":"Yuhang Tian, Xiang He, Yanchi Yuan, Chunyue Wang, Mengchi Zhang, Hui Jiang, Huajing Yang, Kuikun Yang, Hui Jing","doi":"10.1186/s12951-025-03726-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ferroptosis therapy has emerged as a promising antitumor strategy by utilizing the Fenton reaction to destroy cancer cells, where Fe<sup>2+</sup> catalyzes the decomposition of H<sub>2</sub>O<sub>2</sub> into hydroxyl radicals (•OH). Despite the great potential of ferroptosis therapy in suppressing tumor growth, inadequate catalysts and reactants within tumors remains a major challenge before its clinical translation. Herein, we developed glucose oxidase (GOx)-loaded phase-transition nanodroplets (PND) modified with Fe-tannic acid (TA) networks (PND@GOx@Fe-TA) for enhanced antitumor efficacy of ferroptosis therapy via synergistic photothermal and starvation therapy.</p><p><strong>Results: </strong>PND@GOx@Fe-TA can convert glucose into H<sub>2</sub>O<sub>2</sub>, which not only provides sufficient H<sub>2</sub>O<sub>2</sub> for Fenton reaction, but also consumes glucose to exert starvation therapy. In addition, the Fe-TA networks of PND@GOx@Fe-TA can be degraded upon reaching the tumor site, thus generating Fe<sup>2+</sup> from Fe<sup>3+</sup> via reduction by the overexpressed glutathione (GSH) in the tumor microenvironment. The Fe<sup>2+</sup> then reacts with the in situ-generated H<sub>2</sub>O<sub>2</sub> for enhanced Fenton reaction and induces ferroptosis of cancer cells. Additionally, the PND@GOx@Fe-TA exhibits photothermal effects under 808 nm laser irradiation, which not only accelerates the Fe<sup>2+</sup>-mediated Fenton reaction but also gasifies the liquid core of the PND, enabling its use as a contrast agent for contrast-enhanced ultrasound (CEUS), photoacoustic imaging (PAI) and magnetic resonance imaging (MRI).</p><p><strong>Conclusions: </strong>In summary, the PND@GOx@Fe-TA represents a promising approach for multimodal imaging-guided antitumor therapy by synergistic starvation, photothermal and enhanced ferroptosis therapy.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"684"},"PeriodicalIF":12.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533436/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fe-doped phase-transition nanodroplets for synergistic photothermal and starvation-enhanced ferroptosis in cancer therapy.\",\"authors\":\"Yuhang Tian, Xiang He, Yanchi Yuan, Chunyue Wang, Mengchi Zhang, Hui Jiang, Huajing Yang, Kuikun Yang, Hui Jing\",\"doi\":\"10.1186/s12951-025-03726-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ferroptosis therapy has emerged as a promising antitumor strategy by utilizing the Fenton reaction to destroy cancer cells, where Fe<sup>2+</sup> catalyzes the decomposition of H<sub>2</sub>O<sub>2</sub> into hydroxyl radicals (•OH). Despite the great potential of ferroptosis therapy in suppressing tumor growth, inadequate catalysts and reactants within tumors remains a major challenge before its clinical translation. Herein, we developed glucose oxidase (GOx)-loaded phase-transition nanodroplets (PND) modified with Fe-tannic acid (TA) networks (PND@GOx@Fe-TA) for enhanced antitumor efficacy of ferroptosis therapy via synergistic photothermal and starvation therapy.</p><p><strong>Results: </strong>PND@GOx@Fe-TA can convert glucose into H<sub>2</sub>O<sub>2</sub>, which not only provides sufficient H<sub>2</sub>O<sub>2</sub> for Fenton reaction, but also consumes glucose to exert starvation therapy. In addition, the Fe-TA networks of PND@GOx@Fe-TA can be degraded upon reaching the tumor site, thus generating Fe<sup>2+</sup> from Fe<sup>3+</sup> via reduction by the overexpressed glutathione (GSH) in the tumor microenvironment. The Fe<sup>2+</sup> then reacts with the in situ-generated H<sub>2</sub>O<sub>2</sub> for enhanced Fenton reaction and induces ferroptosis of cancer cells. Additionally, the PND@GOx@Fe-TA exhibits photothermal effects under 808 nm laser irradiation, which not only accelerates the Fe<sup>2+</sup>-mediated Fenton reaction but also gasifies the liquid core of the PND, enabling its use as a contrast agent for contrast-enhanced ultrasound (CEUS), photoacoustic imaging (PAI) and magnetic resonance imaging (MRI).</p><p><strong>Conclusions: </strong>In summary, the PND@GOx@Fe-TA represents a promising approach for multimodal imaging-guided antitumor therapy by synergistic starvation, photothermal and enhanced ferroptosis therapy.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"684\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533436/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03726-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03726-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:铁凋亡疗法已经成为一种很有前途的抗肿瘤策略,利用Fenton反应来破坏癌细胞,其中Fe2+催化H2O2分解成羟基自由基(•OH)。尽管铁下垂疗法在抑制肿瘤生长方面具有巨大的潜力,但在其临床转化之前,肿瘤内催化剂和反应物的不足仍然是一个主要挑战。在此,我们开发了含葡萄糖氧化酶(GOx)的相变纳米液滴(PND),经铁单宁酸(TA)网络修饰(PND@GOx@Fe-TA),通过协同光热和饥饿治疗增强了铁下垂治疗的抗肿瘤效果。结果:PND@GOx@Fe-TA能将葡萄糖转化为H2O2,既为Fenton反应提供足够的H2O2,又能消耗葡萄糖发挥饥饿治疗作用。此外,PND@GOx@Fe-TA的Fe-TA网络在到达肿瘤部位后会被降解,从而通过肿瘤微环境中过表达的谷胱甘肽(GSH)还原Fe3+生成Fe2+。然后,Fe2+与原位生成的H2O2反应,增强Fenton反应,诱导癌细胞铁下垂。此外,PND@GOx@Fe-TA在808 nm激光照射下表现出光热效应,不仅加速了Fe2+介导的Fenton反应,还气化了PND的液芯,使其成为对比增强超声(CEUS)、光声成像(PAI)和磁共振成像(MRI)的造影剂。结论:综上所述,PND@GOx@Fe-TA代表了一种有希望的多模态成像引导的抗肿瘤治疗方法,通过协同饥饿,光热和增强铁上拉治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fe-doped phase-transition nanodroplets for synergistic photothermal and starvation-enhanced ferroptosis in cancer therapy.

Background: Ferroptosis therapy has emerged as a promising antitumor strategy by utilizing the Fenton reaction to destroy cancer cells, where Fe2+ catalyzes the decomposition of H2O2 into hydroxyl radicals (•OH). Despite the great potential of ferroptosis therapy in suppressing tumor growth, inadequate catalysts and reactants within tumors remains a major challenge before its clinical translation. Herein, we developed glucose oxidase (GOx)-loaded phase-transition nanodroplets (PND) modified with Fe-tannic acid (TA) networks (PND@GOx@Fe-TA) for enhanced antitumor efficacy of ferroptosis therapy via synergistic photothermal and starvation therapy.

Results: PND@GOx@Fe-TA can convert glucose into H2O2, which not only provides sufficient H2O2 for Fenton reaction, but also consumes glucose to exert starvation therapy. In addition, the Fe-TA networks of PND@GOx@Fe-TA can be degraded upon reaching the tumor site, thus generating Fe2+ from Fe3+ via reduction by the overexpressed glutathione (GSH) in the tumor microenvironment. The Fe2+ then reacts with the in situ-generated H2O2 for enhanced Fenton reaction and induces ferroptosis of cancer cells. Additionally, the PND@GOx@Fe-TA exhibits photothermal effects under 808 nm laser irradiation, which not only accelerates the Fe2+-mediated Fenton reaction but also gasifies the liquid core of the PND, enabling its use as a contrast agent for contrast-enhanced ultrasound (CEUS), photoacoustic imaging (PAI) and magnetic resonance imaging (MRI).

Conclusions: In summary, the PND@GOx@Fe-TA represents a promising approach for multimodal imaging-guided antitumor therapy by synergistic starvation, photothermal and enhanced ferroptosis therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信