Yi Zhou, Jing Wang, Yangcheng Sun, Qiangyan Zhang, Xiangyu Su
{"title":"NR2F1转录激活MACF1驱动wnt介导的肺腺癌局灶性粘附和转移。","authors":"Yi Zhou, Jing Wang, Yangcheng Sun, Qiangyan Zhang, Xiangyu Su","doi":"10.1186/s40001-025-03332-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the regulatory role of MACF1 and its upstream transcriptional control in focal adhesion remodeling and tumor progression in lung adenocarcinoma (LUAD).</p><p><strong>Methods: </strong>We employed in vitro loss- and gain-of-function assays using shRNA-mediated knockdown and ectopic overexpression of MACF1 and NR2F1 in LUAD cell lines (H1299 and Calu-3). Cell proliferation, adhesion, and migration were assessed by CCK-8, EdU, crystal violet, and Transwell assays. In vivo tumor growth and metastasis were evaluated using subcutaneous and tail vein xenograft models in nude mice. RNA-seq and GSEA were performed to identify MACF1-regulated pathways, followed by nuclear-cytoplasmic fractionation, dual-luciferase reporter assays, and immunofluorescence to assess WNT/β-catenin activity. ChIP-qPCR and ChIP-seq data from ENCODE were used to validate NR2F1 binding to the MACF1 promoter.</p><p><strong>Results: </strong>MACF1 knockdown significantly suppressed LUAD cell proliferation, DNA replication, adhesion, and migration, and reduced tumor burden and lung metastases in vivo. Mechanistically, MACF1 activated WNT/β-catenin signaling by promoting CTNNB1 nuclear translocation, which upregulated focal adhesion genes (Paxillin, FAK, ITGB1). CTNNB1 agonist TWS119 restored focal adhesion in MACF1-deficient cells. Bioinformatic prediction and ChIP validation identified NR2F1 as a transcription factor directly targeting the MACF1 promoter. NR2F1 deficiency reduced MACF1 expression and phenocopied its functional loss, while MACF1 overexpression rescued the impaired phenotype.</p><p><strong>Conclusion: </strong>Our study uncovers a previously unrecognized NR2F1-MACF1-WNT axis that drives focal adhesion formation and LUAD progression. Targeting this regulatory circuit may offer new avenues for anti-metastatic therapy in lung adenocarcinoma.</p><p><strong>Highlights: </strong>1. NR2F1 is identified as a direct upstream transcription factor that activates MACF1 expression in LUAD. 2. MACF1 promotes LUAD cell proliferation, adhesion, and migration by enhancing focal adhesion assembly. 3. MACF1 activates the WNT/CTNNB1 signaling cascade, facilitating CTNNB1 nuclear translocation and downstream target expression. 4. Loss of MACF1 impairs focal adhesion formation and metastatic potential both in vitro and in xenograft and tail vein models. 5. The NR2F1-MACF1-WNT axis represents a novel regulatory circuit driving LUAD metastasis and offers potential therapeutic targets.</p>","PeriodicalId":11949,"journal":{"name":"European Journal of Medical Research","volume":"30 1","pages":"988"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533429/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptional activation of MACF1 by NR2F1 drives WNT-mediated focal adhesion and metastasis in lung adenocarcinoma.\",\"authors\":\"Yi Zhou, Jing Wang, Yangcheng Sun, Qiangyan Zhang, Xiangyu Su\",\"doi\":\"10.1186/s40001-025-03332-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To investigate the regulatory role of MACF1 and its upstream transcriptional control in focal adhesion remodeling and tumor progression in lung adenocarcinoma (LUAD).</p><p><strong>Methods: </strong>We employed in vitro loss- and gain-of-function assays using shRNA-mediated knockdown and ectopic overexpression of MACF1 and NR2F1 in LUAD cell lines (H1299 and Calu-3). Cell proliferation, adhesion, and migration were assessed by CCK-8, EdU, crystal violet, and Transwell assays. In vivo tumor growth and metastasis were evaluated using subcutaneous and tail vein xenograft models in nude mice. RNA-seq and GSEA were performed to identify MACF1-regulated pathways, followed by nuclear-cytoplasmic fractionation, dual-luciferase reporter assays, and immunofluorescence to assess WNT/β-catenin activity. ChIP-qPCR and ChIP-seq data from ENCODE were used to validate NR2F1 binding to the MACF1 promoter.</p><p><strong>Results: </strong>MACF1 knockdown significantly suppressed LUAD cell proliferation, DNA replication, adhesion, and migration, and reduced tumor burden and lung metastases in vivo. Mechanistically, MACF1 activated WNT/β-catenin signaling by promoting CTNNB1 nuclear translocation, which upregulated focal adhesion genes (Paxillin, FAK, ITGB1). CTNNB1 agonist TWS119 restored focal adhesion in MACF1-deficient cells. Bioinformatic prediction and ChIP validation identified NR2F1 as a transcription factor directly targeting the MACF1 promoter. NR2F1 deficiency reduced MACF1 expression and phenocopied its functional loss, while MACF1 overexpression rescued the impaired phenotype.</p><p><strong>Conclusion: </strong>Our study uncovers a previously unrecognized NR2F1-MACF1-WNT axis that drives focal adhesion formation and LUAD progression. Targeting this regulatory circuit may offer new avenues for anti-metastatic therapy in lung adenocarcinoma.</p><p><strong>Highlights: </strong>1. NR2F1 is identified as a direct upstream transcription factor that activates MACF1 expression in LUAD. 2. MACF1 promotes LUAD cell proliferation, adhesion, and migration by enhancing focal adhesion assembly. 3. MACF1 activates the WNT/CTNNB1 signaling cascade, facilitating CTNNB1 nuclear translocation and downstream target expression. 4. Loss of MACF1 impairs focal adhesion formation and metastatic potential both in vitro and in xenograft and tail vein models. 5. The NR2F1-MACF1-WNT axis represents a novel regulatory circuit driving LUAD metastasis and offers potential therapeutic targets.</p>\",\"PeriodicalId\":11949,\"journal\":{\"name\":\"European Journal of Medical Research\",\"volume\":\"30 1\",\"pages\":\"988\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533429/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40001-025-03332-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40001-025-03332-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Transcriptional activation of MACF1 by NR2F1 drives WNT-mediated focal adhesion and metastasis in lung adenocarcinoma.
Objective: To investigate the regulatory role of MACF1 and its upstream transcriptional control in focal adhesion remodeling and tumor progression in lung adenocarcinoma (LUAD).
Methods: We employed in vitro loss- and gain-of-function assays using shRNA-mediated knockdown and ectopic overexpression of MACF1 and NR2F1 in LUAD cell lines (H1299 and Calu-3). Cell proliferation, adhesion, and migration were assessed by CCK-8, EdU, crystal violet, and Transwell assays. In vivo tumor growth and metastasis were evaluated using subcutaneous and tail vein xenograft models in nude mice. RNA-seq and GSEA were performed to identify MACF1-regulated pathways, followed by nuclear-cytoplasmic fractionation, dual-luciferase reporter assays, and immunofluorescence to assess WNT/β-catenin activity. ChIP-qPCR and ChIP-seq data from ENCODE were used to validate NR2F1 binding to the MACF1 promoter.
Results: MACF1 knockdown significantly suppressed LUAD cell proliferation, DNA replication, adhesion, and migration, and reduced tumor burden and lung metastases in vivo. Mechanistically, MACF1 activated WNT/β-catenin signaling by promoting CTNNB1 nuclear translocation, which upregulated focal adhesion genes (Paxillin, FAK, ITGB1). CTNNB1 agonist TWS119 restored focal adhesion in MACF1-deficient cells. Bioinformatic prediction and ChIP validation identified NR2F1 as a transcription factor directly targeting the MACF1 promoter. NR2F1 deficiency reduced MACF1 expression and phenocopied its functional loss, while MACF1 overexpression rescued the impaired phenotype.
Conclusion: Our study uncovers a previously unrecognized NR2F1-MACF1-WNT axis that drives focal adhesion formation and LUAD progression. Targeting this regulatory circuit may offer new avenues for anti-metastatic therapy in lung adenocarcinoma.
Highlights: 1. NR2F1 is identified as a direct upstream transcription factor that activates MACF1 expression in LUAD. 2. MACF1 promotes LUAD cell proliferation, adhesion, and migration by enhancing focal adhesion assembly. 3. MACF1 activates the WNT/CTNNB1 signaling cascade, facilitating CTNNB1 nuclear translocation and downstream target expression. 4. Loss of MACF1 impairs focal adhesion formation and metastatic potential both in vitro and in xenograft and tail vein models. 5. The NR2F1-MACF1-WNT axis represents a novel regulatory circuit driving LUAD metastasis and offers potential therapeutic targets.
期刊介绍:
European Journal of Medical Research publishes translational and clinical research of international interest across all medical disciplines, enabling clinicians and other researchers to learn about developments and innovations within these disciplines and across the boundaries between disciplines. The journal publishes high quality research and reviews and aims to ensure that the results of all well-conducted research are published, regardless of their outcome.