{"title":"透明质酸基生物材料的进展:在癌症治疗、伤口愈合和疾病管理中的应用。","authors":"Li Wang, Fei Zhou, Weimin Xie","doi":"10.1007/s10856-025-06946-8","DOIUrl":null,"url":null,"abstract":"<div><p>Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan and is essential in biomedical research due to its distinct properties, compatibility with biological tissues, and functions in preserving tissue hydration, lubrication, and the integrity of the extracellular matrix, a significance recognized since 1934. Its capability to develop hydrogels and react to environmental factors has provided it a strong factor for drug delivery, tissue engineering, and wound healing uses. This review emphasizes the various biomedical uses of HA-based materials, focusing on their functions in cancer treatment, wound healing, inflammation control, antibacterial properties, and antioxidant functions. In cancer treatment, HA-functionalized nanoparticles improve the targeted drug delivery by using the additional presence of CD44 receptors in cancer cells. HA-based hydrogels have demonstrated significant potential in advancing wound healing by regulating inflammatory responses, enhancing angiogenesis, and participating in the extracellular matrix remodeling. Moreover, HA’s anti-inflammatory and antioxidant characteristics have been utilized in the treatment of chronic inflammatory conditions including osteoarthritis and inflammatory bowel disease. The recent developments in HA-based materials have also demonstrated their promise in antibacterial applications, diabetes control, and in treating cardiovascular and neurological conditions. The advancement of HA-based intelligent drug delivery systems and bioactive scaffolds is ongoing, presenting new treatment options for tissue repair and disease management. This review emphasizes the diverse functions of HA in both health and disease, showcasing its capacity to tackle various medical issues through cutting-edge biomedical applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-025-06946-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances in hyaluronic acid-based biomaterials: applications in cancer therapy, wound healing, and disease management\",\"authors\":\"Li Wang, Fei Zhou, Weimin Xie\",\"doi\":\"10.1007/s10856-025-06946-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan and is essential in biomedical research due to its distinct properties, compatibility with biological tissues, and functions in preserving tissue hydration, lubrication, and the integrity of the extracellular matrix, a significance recognized since 1934. Its capability to develop hydrogels and react to environmental factors has provided it a strong factor for drug delivery, tissue engineering, and wound healing uses. This review emphasizes the various biomedical uses of HA-based materials, focusing on their functions in cancer treatment, wound healing, inflammation control, antibacterial properties, and antioxidant functions. In cancer treatment, HA-functionalized nanoparticles improve the targeted drug delivery by using the additional presence of CD44 receptors in cancer cells. HA-based hydrogels have demonstrated significant potential in advancing wound healing by regulating inflammatory responses, enhancing angiogenesis, and participating in the extracellular matrix remodeling. Moreover, HA’s anti-inflammatory and antioxidant characteristics have been utilized in the treatment of chronic inflammatory conditions including osteoarthritis and inflammatory bowel disease. The recent developments in HA-based materials have also demonstrated their promise in antibacterial applications, diabetes control, and in treating cardiovascular and neurological conditions. The advancement of HA-based intelligent drug delivery systems and bioactive scaffolds is ongoing, presenting new treatment options for tissue repair and disease management. This review emphasizes the diverse functions of HA in both health and disease, showcasing its capacity to tackle various medical issues through cutting-edge biomedical applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":647,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Medicine\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10856-025-06946-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10856-025-06946-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-025-06946-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Advances in hyaluronic acid-based biomaterials: applications in cancer therapy, wound healing, and disease management
Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan and is essential in biomedical research due to its distinct properties, compatibility with biological tissues, and functions in preserving tissue hydration, lubrication, and the integrity of the extracellular matrix, a significance recognized since 1934. Its capability to develop hydrogels and react to environmental factors has provided it a strong factor for drug delivery, tissue engineering, and wound healing uses. This review emphasizes the various biomedical uses of HA-based materials, focusing on their functions in cancer treatment, wound healing, inflammation control, antibacterial properties, and antioxidant functions. In cancer treatment, HA-functionalized nanoparticles improve the targeted drug delivery by using the additional presence of CD44 receptors in cancer cells. HA-based hydrogels have demonstrated significant potential in advancing wound healing by regulating inflammatory responses, enhancing angiogenesis, and participating in the extracellular matrix remodeling. Moreover, HA’s anti-inflammatory and antioxidant characteristics have been utilized in the treatment of chronic inflammatory conditions including osteoarthritis and inflammatory bowel disease. The recent developments in HA-based materials have also demonstrated their promise in antibacterial applications, diabetes control, and in treating cardiovascular and neurological conditions. The advancement of HA-based intelligent drug delivery systems and bioactive scaffolds is ongoing, presenting new treatment options for tissue repair and disease management. This review emphasizes the diverse functions of HA in both health and disease, showcasing its capacity to tackle various medical issues through cutting-edge biomedical applications.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.