Farzaneh Sabbagh, Anna Zakrzewska, Daniel Rybak, Julia Król, Asad Abdi, Paweł Nakielski, Filippo Pierini
{"title":"人工智能驱动的经皮给药系统。","authors":"Farzaneh Sabbagh, Anna Zakrzewska, Daniel Rybak, Julia Król, Asad Abdi, Paweł Nakielski, Filippo Pierini","doi":"10.1002/adhm.202503030","DOIUrl":null,"url":null,"abstract":"<p><p>Transdermal drug delivery systems (TDDSs) offer non-invasive therapy but face persistent challenges. Artificial intelligence (AI) transforms TDDSs by leveraging machine learning (ML) and predictive analytics to address these barriers. ML models predict drug entrapment with 93.0% accuracy, streamlining development. AI enhances transdermal patch formulations by forecasting drug release kinetics, skin penetration, and stability, minimizing reliance on costly clinical trials. Through virtual screening, AI identifies novel drug candidates and permeation enhancers, accelerating innovation. In microneedle systems, AI optimizes geometries, materials, and drug loading, improving precision and personalization. AI-integrated biosensors enable real-time monitoring, supporting adaptive dosing tailored to individual physiological profiles. Compared to traditional modeling, AI provides superior accuracy and scalability, handling complex datasets to reveal non-linear relationships. Despite challenges like data quality and privacy concerns, AI's integration with 3-dimensional printing and stimuli-responsive materials drives the development of personalized, efficient transdermal therapies. This perspective highlights AI's critical role in advancing therapeutic efficacy and patient-centric care in TDDSs, uniquely combining predictive modeling with real-time monitoring to envision next-generation personalized transdermal delivery systems.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e03030"},"PeriodicalIF":9.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transdermal Drug Delivery Systems Powered by Artificial Intelligence.\",\"authors\":\"Farzaneh Sabbagh, Anna Zakrzewska, Daniel Rybak, Julia Król, Asad Abdi, Paweł Nakielski, Filippo Pierini\",\"doi\":\"10.1002/adhm.202503030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transdermal drug delivery systems (TDDSs) offer non-invasive therapy but face persistent challenges. Artificial intelligence (AI) transforms TDDSs by leveraging machine learning (ML) and predictive analytics to address these barriers. ML models predict drug entrapment with 93.0% accuracy, streamlining development. AI enhances transdermal patch formulations by forecasting drug release kinetics, skin penetration, and stability, minimizing reliance on costly clinical trials. Through virtual screening, AI identifies novel drug candidates and permeation enhancers, accelerating innovation. In microneedle systems, AI optimizes geometries, materials, and drug loading, improving precision and personalization. AI-integrated biosensors enable real-time monitoring, supporting adaptive dosing tailored to individual physiological profiles. Compared to traditional modeling, AI provides superior accuracy and scalability, handling complex datasets to reveal non-linear relationships. Despite challenges like data quality and privacy concerns, AI's integration with 3-dimensional printing and stimuli-responsive materials drives the development of personalized, efficient transdermal therapies. This perspective highlights AI's critical role in advancing therapeutic efficacy and patient-centric care in TDDSs, uniquely combining predictive modeling with real-time monitoring to envision next-generation personalized transdermal delivery systems.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e03030\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202503030\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202503030","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Transdermal Drug Delivery Systems Powered by Artificial Intelligence.
Transdermal drug delivery systems (TDDSs) offer non-invasive therapy but face persistent challenges. Artificial intelligence (AI) transforms TDDSs by leveraging machine learning (ML) and predictive analytics to address these barriers. ML models predict drug entrapment with 93.0% accuracy, streamlining development. AI enhances transdermal patch formulations by forecasting drug release kinetics, skin penetration, and stability, minimizing reliance on costly clinical trials. Through virtual screening, AI identifies novel drug candidates and permeation enhancers, accelerating innovation. In microneedle systems, AI optimizes geometries, materials, and drug loading, improving precision and personalization. AI-integrated biosensors enable real-time monitoring, supporting adaptive dosing tailored to individual physiological profiles. Compared to traditional modeling, AI provides superior accuracy and scalability, handling complex datasets to reveal non-linear relationships. Despite challenges like data quality and privacy concerns, AI's integration with 3-dimensional printing and stimuli-responsive materials drives the development of personalized, efficient transdermal therapies. This perspective highlights AI's critical role in advancing therapeutic efficacy and patient-centric care in TDDSs, uniquely combining predictive modeling with real-time monitoring to envision next-generation personalized transdermal delivery systems.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.