无枝晶高可逆锌金属阳极非晶TiO2涂层的界面工程研究。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Le Gao, Tianyong Zhang, Xiangdong Yang, Xuyang Lu, Xiaolei Wang, Zhao Liang, Jiaoyan Dai, Mingdong Bao, Yingwen Cao, Weiyou Yang, Qing Shi
{"title":"无枝晶高可逆锌金属阳极非晶TiO2涂层的界面工程研究。","authors":"Le Gao, Tianyong Zhang, Xiangdong Yang, Xuyang Lu, Xiaolei Wang, Zhao Liang, Jiaoyan Dai, Mingdong Bao, Yingwen Cao, Weiyou Yang, Qing Shi","doi":"10.1021/acsami.5c11555","DOIUrl":null,"url":null,"abstract":"<p><p>The commercialization of aqueous zinc-ion batteries (AZIBs) is limited by uncontrollable dendrite growth and interfacial side reactions. To tackle this critical issue, we propose a surface engineering strategy involving the deposition of a zincophilic amorphous titanium dioxide (AS-TiO<sub>2</sub>) protective layer onto the zinc anode. The resulting Zn@AS-TiO<sub>2</sub> anode demonstrates remarkable electrochemical performance, achieving exceptional cycling stability over 3750 h at 1 mA cm<sup>-2</sup> while maintaining near-ideal Coulombic efficiency (99.5%) and outstanding deposition/stripping reversibility. Mechanistic studies reveal that the enhanced performance primarily stems from the significantly higher binding energy of Zn adsorption on amorphous TiO<sub>2</sub> compared to those on crystalline TiO<sub>2</sub> and bare Zn, which endows the Zn@AS-TiO<sub>2</sub> anode with superior zincophilicity and substantially reduces the Zn<sup>2+</sup> nucleation overpotential. In addition, the amorphous structure facilitates a more homogeneous electric field distribution at the electrode-electrolyte interface, effectively regulating Zn<sup>2+</sup> flux and promoting uniform Zn deposition. As a result, dendrite formation is efficiently suppressed even during prolonged cycling. This interface modification strategy, which integrates zincophilic surface engineering with electric field regulation, offers valuable mechanistic insights into dendrite suppression and presents a promising pathway for the development of durable metal anodes in next-generation aqueous energy storage systems.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial Engineering of Amorphous TiO<sub>2</sub> Coatings for Dendrite-Free and Highly Reversible Zinc Metal Anodes.\",\"authors\":\"Le Gao, Tianyong Zhang, Xiangdong Yang, Xuyang Lu, Xiaolei Wang, Zhao Liang, Jiaoyan Dai, Mingdong Bao, Yingwen Cao, Weiyou Yang, Qing Shi\",\"doi\":\"10.1021/acsami.5c11555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The commercialization of aqueous zinc-ion batteries (AZIBs) is limited by uncontrollable dendrite growth and interfacial side reactions. To tackle this critical issue, we propose a surface engineering strategy involving the deposition of a zincophilic amorphous titanium dioxide (AS-TiO<sub>2</sub>) protective layer onto the zinc anode. The resulting Zn@AS-TiO<sub>2</sub> anode demonstrates remarkable electrochemical performance, achieving exceptional cycling stability over 3750 h at 1 mA cm<sup>-2</sup> while maintaining near-ideal Coulombic efficiency (99.5%) and outstanding deposition/stripping reversibility. Mechanistic studies reveal that the enhanced performance primarily stems from the significantly higher binding energy of Zn adsorption on amorphous TiO<sub>2</sub> compared to those on crystalline TiO<sub>2</sub> and bare Zn, which endows the Zn@AS-TiO<sub>2</sub> anode with superior zincophilicity and substantially reduces the Zn<sup>2+</sup> nucleation overpotential. In addition, the amorphous structure facilitates a more homogeneous electric field distribution at the electrode-electrolyte interface, effectively regulating Zn<sup>2+</sup> flux and promoting uniform Zn deposition. As a result, dendrite formation is efficiently suppressed even during prolonged cycling. This interface modification strategy, which integrates zincophilic surface engineering with electric field regulation, offers valuable mechanistic insights into dendrite suppression and presents a promising pathway for the development of durable metal anodes in next-generation aqueous energy storage systems.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c11555\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c11555","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水性锌离子电池(AZIBs)的商业化受到不可控枝晶生长和界面副反应的限制。为了解决这一关键问题,我们提出了一种表面工程策略,包括在锌阳极上沉积亲锌无定形二氧化钛(AS-TiO2)保护层。得到的Zn@AS-TiO2阳极表现出卓越的电化学性能,在1ma cm-2下,在3750 h内实现了优异的循环稳定性,同时保持了接近理想的库仑效率(99.5%)和优异的沉积/剥离可逆性。机理研究表明,性能的增强主要源于无定形TiO2吸附Zn的结合能明显高于晶体TiO2和裸Zn,这使得Zn@AS-TiO2阳极具有优异的亲锌性,并大幅降低了Zn2+成核过电位。此外,非晶结构使电极-电解质界面处的电场分布更加均匀,有效调节Zn2+通量,促进均匀的Zn沉积。结果,即使在长时间循环过程中,树突的形成也被有效地抑制。这种界面修饰策略将亲锌表面工程与电场调节相结合,为枝晶抑制提供了有价值的机理见解,并为下一代水储能系统中耐用金属阳极的开发提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacial Engineering of Amorphous TiO<sub>2</sub> Coatings for Dendrite-Free and Highly Reversible Zinc Metal Anodes.

Interfacial Engineering of Amorphous TiO2 Coatings for Dendrite-Free and Highly Reversible Zinc Metal Anodes.

The commercialization of aqueous zinc-ion batteries (AZIBs) is limited by uncontrollable dendrite growth and interfacial side reactions. To tackle this critical issue, we propose a surface engineering strategy involving the deposition of a zincophilic amorphous titanium dioxide (AS-TiO2) protective layer onto the zinc anode. The resulting Zn@AS-TiO2 anode demonstrates remarkable electrochemical performance, achieving exceptional cycling stability over 3750 h at 1 mA cm-2 while maintaining near-ideal Coulombic efficiency (99.5%) and outstanding deposition/stripping reversibility. Mechanistic studies reveal that the enhanced performance primarily stems from the significantly higher binding energy of Zn adsorption on amorphous TiO2 compared to those on crystalline TiO2 and bare Zn, which endows the Zn@AS-TiO2 anode with superior zincophilicity and substantially reduces the Zn2+ nucleation overpotential. In addition, the amorphous structure facilitates a more homogeneous electric field distribution at the electrode-electrolyte interface, effectively regulating Zn2+ flux and promoting uniform Zn deposition. As a result, dendrite formation is efficiently suppressed even during prolonged cycling. This interface modification strategy, which integrates zincophilic surface engineering with electric field regulation, offers valuable mechanistic insights into dendrite suppression and presents a promising pathway for the development of durable metal anodes in next-generation aqueous energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信