{"title":"钙钛矿的理性a位熵工程:双交换增强磁电耦合用于超高效微波吸收。","authors":"Mengru Li, Kaiyue Zhao, Bingbing Fan, Yang Li, Dalong Tan, Hailong Wang, Qilong Gao, Wei Li, Hongsong Zhang, Yanqiu Zhu, Rui Zhang","doi":"10.1002/advs.202516938","DOIUrl":null,"url":null,"abstract":"<p><p>High-entropy engineering at the A-site, combined with the variable valence states of Mn ions and diverse bonding configurations of perovskite elements and structures, presents new opportunities for the development and application of high-temperature electromagnetic wave-absorbing materials. In this study, the magnetic and dielectric properties of AMnO<sub>3</sub> are controlled by designing A-site elements with various ionic radii and entropies. The microwave-absorption performance of (La<sub>0.2</sub>Ba<sub>0.2</sub>Sr<sub>0.2</sub>Ca<sub>0.2</sub>Na<sub>0.2</sub>)MnO<sub>3</sub> high-entropy perovskites is significantly higher than those of AMnO<sub>3</sub> with different ionic radii and (Ba<sub>1/3</sub>Sr<sub>1/3</sub>Ca<sub>1/3</sub>)MnO<sub>3</sub> medium-entropy perovskites. Specifically, the high-entropy samples exhibit a minimum reflection loss (RL<sub>min</sub>) of -60.86 dB at a thickness of 1.0 mm and an effective absorption bandwidth of 3.26 GHz, whereas the medium-entropy ceramics show RL<sub>min</sub> values of -17.93 and -44.59 dB at 8.5 mm ((Ba<sub>1/3</sub>Sr<sub>1/3</sub>Ca<sub>1/3</sub>)MnO<sub>3</sub>) and 8.8 mm ((La<sub>0.25</sub>Ba<sub>0.25</sub>Sr<sub>0.25</sub>Ca<sub>0.25</sub>)MnO<sub>3</sub>), respectively. In high-entropy perovskites, aliovalent ions and oxygen vacancies at the A-site promote exchange interactions between Mn─O─Mn bonds, enhancing magnetism. Additionally, oxygen vacancies and lattice distortions in high-entropy systems enhance the dielectric loss, achieving magnetoelectric cooperative coupling in high-entropy perovskites. This work provides a new research direction for designing single-phase perovskites with excellent electromagnetic wave-absorbing properties via magnetoelectric cooperative-loss coupling.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e16938"},"PeriodicalIF":14.1000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational A-Site Entropy Engineering in Perovskites: Dual-Exchange Enhanced Magnetoelectric Coupling for Ultra-Efficient Microwave Absorption.\",\"authors\":\"Mengru Li, Kaiyue Zhao, Bingbing Fan, Yang Li, Dalong Tan, Hailong Wang, Qilong Gao, Wei Li, Hongsong Zhang, Yanqiu Zhu, Rui Zhang\",\"doi\":\"10.1002/advs.202516938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-entropy engineering at the A-site, combined with the variable valence states of Mn ions and diverse bonding configurations of perovskite elements and structures, presents new opportunities for the development and application of high-temperature electromagnetic wave-absorbing materials. In this study, the magnetic and dielectric properties of AMnO<sub>3</sub> are controlled by designing A-site elements with various ionic radii and entropies. The microwave-absorption performance of (La<sub>0.2</sub>Ba<sub>0.2</sub>Sr<sub>0.2</sub>Ca<sub>0.2</sub>Na<sub>0.2</sub>)MnO<sub>3</sub> high-entropy perovskites is significantly higher than those of AMnO<sub>3</sub> with different ionic radii and (Ba<sub>1/3</sub>Sr<sub>1/3</sub>Ca<sub>1/3</sub>)MnO<sub>3</sub> medium-entropy perovskites. Specifically, the high-entropy samples exhibit a minimum reflection loss (RL<sub>min</sub>) of -60.86 dB at a thickness of 1.0 mm and an effective absorption bandwidth of 3.26 GHz, whereas the medium-entropy ceramics show RL<sub>min</sub> values of -17.93 and -44.59 dB at 8.5 mm ((Ba<sub>1/3</sub>Sr<sub>1/3</sub>Ca<sub>1/3</sub>)MnO<sub>3</sub>) and 8.8 mm ((La<sub>0.25</sub>Ba<sub>0.25</sub>Sr<sub>0.25</sub>Ca<sub>0.25</sub>)MnO<sub>3</sub>), respectively. In high-entropy perovskites, aliovalent ions and oxygen vacancies at the A-site promote exchange interactions between Mn─O─Mn bonds, enhancing magnetism. Additionally, oxygen vacancies and lattice distortions in high-entropy systems enhance the dielectric loss, achieving magnetoelectric cooperative coupling in high-entropy perovskites. This work provides a new research direction for designing single-phase perovskites with excellent electromagnetic wave-absorbing properties via magnetoelectric cooperative-loss coupling.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e16938\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202516938\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202516938","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
a位的高熵工程,结合Mn离子的可变价态和钙钛矿元素和结构的不同键构型,为高温电磁波吸波材料的开发和应用提供了新的机遇。在本研究中,通过设计具有不同离子半径和熵的a位元素来控制AMnO3的磁性和介电性能。(La0.2Ba0.2Sr0.2Ca0.2Na0.2)MnO3高熵钙钛矿的微波吸收性能显著高于不同离子半径的AMnO3和(Ba1/3Sr1/3Ca1/3)MnO3中熵钙钛矿。其中,高熵样品在厚度为1.0 mm时的最小反射损耗(RLmin)为-60.86 dB,有效吸收带宽为3.26 GHz,而中熵样品在8.5 mm ((Ba1/3Sr1/3Ca1/3)MnO3和8.8 mm ((La0.25Ba0.25Sr0.25Ca0.25)MnO3时的最小反射损耗(RLmin)分别为-17.93和-44.59 dB。在高熵钙钛矿中,a位的共价离子和氧空位促进了Mn─O─Mn键之间的交换相互作用,增强了磁性。此外,高熵体系中的氧空位和晶格畸变增加了介质损耗,实现了高熵钙钛矿中的磁电协同耦合。本研究为通过磁电协同损耗耦合设计具有优异电磁波吸收性能的单相钙钛矿提供了新的研究方向。
Rational A-Site Entropy Engineering in Perovskites: Dual-Exchange Enhanced Magnetoelectric Coupling for Ultra-Efficient Microwave Absorption.
High-entropy engineering at the A-site, combined with the variable valence states of Mn ions and diverse bonding configurations of perovskite elements and structures, presents new opportunities for the development and application of high-temperature electromagnetic wave-absorbing materials. In this study, the magnetic and dielectric properties of AMnO3 are controlled by designing A-site elements with various ionic radii and entropies. The microwave-absorption performance of (La0.2Ba0.2Sr0.2Ca0.2Na0.2)MnO3 high-entropy perovskites is significantly higher than those of AMnO3 with different ionic radii and (Ba1/3Sr1/3Ca1/3)MnO3 medium-entropy perovskites. Specifically, the high-entropy samples exhibit a minimum reflection loss (RLmin) of -60.86 dB at a thickness of 1.0 mm and an effective absorption bandwidth of 3.26 GHz, whereas the medium-entropy ceramics show RLmin values of -17.93 and -44.59 dB at 8.5 mm ((Ba1/3Sr1/3Ca1/3)MnO3) and 8.8 mm ((La0.25Ba0.25Sr0.25Ca0.25)MnO3), respectively. In high-entropy perovskites, aliovalent ions and oxygen vacancies at the A-site promote exchange interactions between Mn─O─Mn bonds, enhancing magnetism. Additionally, oxygen vacancies and lattice distortions in high-entropy systems enhance the dielectric loss, achieving magnetoelectric cooperative coupling in high-entropy perovskites. This work provides a new research direction for designing single-phase perovskites with excellent electromagnetic wave-absorbing properties via magnetoelectric cooperative-loss coupling.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.