实现GHz可调谐超高Q准bic模式的压电-金属声子晶体。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xuankai Xu, Jiawei Li, Ruoyu Wang, Ruihong Xiong, Yiwei Wang, Xiaoqin Shen, Tao Wu
{"title":"实现GHz可调谐超高Q准bic模式的压电-金属声子晶体。","authors":"Xuankai Xu, Jiawei Li, Ruoyu Wang, Ruihong Xiong, Yiwei Wang, Xiaoqin Shen, Tao Wu","doi":"10.1002/advs.202513664","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of GHz-frequency, high-quality factor (Q), and electrically tunable acoustic resonators holds significant potential for advancing applications in quantum information technologies, microwave photonics, and reconfigurable RF systems. However, simultaneously achieving these three characteristics within a single, scalable platform remains a fundamental challenge. Here, the experimental demonstration of a GHz quasi-BIC resonator in a piezoelectric thin-film shear horizontal (SH) wave system, achieved through a structurally simple piezoelectric-metal phononic crystal (PnC) architecture on a LiNbO<sub>3</sub> thin film, is reported. This approach enables leaky Fabry-Perot coupling mode and localized trapping quasi-BIC mode. Without the need for deep etching or intricate patterning, a high room-temperature quality factor of ≈6.5 × 10<sup>4</sup> at ≈1 GHz in ambient air is achieved, corresponding to an f × Q product of ≈6.4 × 10<sup>13</sup> Hz at quasi-BIC mode. Furthermore, efficient electrical tunability is demonstrated via low-voltage (0.6 V) electrothermal modulation of the PnC structure, enabling a reversible transition between trapped and transmission states and yielding a high-contrast amplitude modulation of 47.75 dB. This work opens new directions for scalable on-chip phononic circuits in quantum acoustics, reconfigurable RF systems, and signal processing applications.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e13664"},"PeriodicalIF":14.1000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezoelectric-Metal Phononic Crystal Enabling GHz Tunable Ultrahigh Q Quasi-BIC Mode.\",\"authors\":\"Xuankai Xu, Jiawei Li, Ruoyu Wang, Ruihong Xiong, Yiwei Wang, Xiaoqin Shen, Tao Wu\",\"doi\":\"10.1002/advs.202513664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integration of GHz-frequency, high-quality factor (Q), and electrically tunable acoustic resonators holds significant potential for advancing applications in quantum information technologies, microwave photonics, and reconfigurable RF systems. However, simultaneously achieving these three characteristics within a single, scalable platform remains a fundamental challenge. Here, the experimental demonstration of a GHz quasi-BIC resonator in a piezoelectric thin-film shear horizontal (SH) wave system, achieved through a structurally simple piezoelectric-metal phononic crystal (PnC) architecture on a LiNbO<sub>3</sub> thin film, is reported. This approach enables leaky Fabry-Perot coupling mode and localized trapping quasi-BIC mode. Without the need for deep etching or intricate patterning, a high room-temperature quality factor of ≈6.5 × 10<sup>4</sup> at ≈1 GHz in ambient air is achieved, corresponding to an f × Q product of ≈6.4 × 10<sup>13</sup> Hz at quasi-BIC mode. Furthermore, efficient electrical tunability is demonstrated via low-voltage (0.6 V) electrothermal modulation of the PnC structure, enabling a reversible transition between trapped and transmission states and yielding a high-contrast amplitude modulation of 47.75 dB. This work opens new directions for scalable on-chip phononic circuits in quantum acoustics, reconfigurable RF systems, and signal processing applications.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e13664\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202513664\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202513664","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

ghz频率、高质量因子(Q)和电可调谐声学谐振器的集成对于推进量子信息技术、微波光子学和可重构射频系统的应用具有重大潜力。然而,在一个单一的、可扩展的平台中同时实现这三个特征仍然是一个根本性的挑战。本文报道了一种结构简单的压电-金属声子晶体(PnC)结构在LiNbO3薄膜上实现的压电薄膜剪切水平(SH)波系统中的GHz准bic谐振器的实验演示。该方法实现了泄漏法布里-珀罗耦合模式和局域捕获准bic模式。在不需要深度蚀刻或复杂的图案的情况下,在≈1 GHz的环境空气中实现了≈6.5 × 104的高室温质量因子,对应于准bic模式下≈6.4 × 1013 Hz的f × Q积。此外,通过PnC结构的低压(0.6 V)电热调制,证明了高效的电气可调性,实现了捕获状态和传输状态之间的可逆转换,并产生47.75 dB的高对比度振幅调制。这项工作为量子声学、可重构射频系统和信号处理应用中的可扩展片上声子电路开辟了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piezoelectric-Metal Phononic Crystal Enabling GHz Tunable Ultrahigh Q Quasi-BIC Mode.

The integration of GHz-frequency, high-quality factor (Q), and electrically tunable acoustic resonators holds significant potential for advancing applications in quantum information technologies, microwave photonics, and reconfigurable RF systems. However, simultaneously achieving these three characteristics within a single, scalable platform remains a fundamental challenge. Here, the experimental demonstration of a GHz quasi-BIC resonator in a piezoelectric thin-film shear horizontal (SH) wave system, achieved through a structurally simple piezoelectric-metal phononic crystal (PnC) architecture on a LiNbO3 thin film, is reported. This approach enables leaky Fabry-Perot coupling mode and localized trapping quasi-BIC mode. Without the need for deep etching or intricate patterning, a high room-temperature quality factor of ≈6.5 × 104 at ≈1 GHz in ambient air is achieved, corresponding to an f × Q product of ≈6.4 × 1013 Hz at quasi-BIC mode. Furthermore, efficient electrical tunability is demonstrated via low-voltage (0.6 V) electrothermal modulation of the PnC structure, enabling a reversible transition between trapped and transmission states and yielding a high-contrast amplitude modulation of 47.75 dB. This work opens new directions for scalable on-chip phononic circuits in quantum acoustics, reconfigurable RF systems, and signal processing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信