Xiaohei Wu, Xinrong Yang, Bowen Chang, Rui Sun, Jie Min
{"title":"基于非富勒烯受体的有机光伏材料的见解和挑战","authors":"Xiaohei Wu, Xinrong Yang, Bowen Chang, Rui Sun, Jie Min","doi":"10.1016/j.joule.2025.102169","DOIUrl":null,"url":null,"abstract":"Organic photovoltaics (OPVs) have witnessed significant advancements in device efficiency and operational stability, with single-junction cells exceeding 20% efficiency and over 10,000 h of lifetime. These improvements have been primarily driven by the rapid development of novel non-fullerene acceptors (NFAs) and their corresponding donor materials. Although relevant active layer materials are highly efficient and stable, their development largely relied on empirical trial-and-error approaches and the obsessive pursuit of performance metrics, with a limited understanding of the intricate structure-property relationships governing device performance, the suitable donor/acceptor (D/A) combinations, and component modulation. To bridge the gap between performance improvement and device practicality, this review examines and describes several important conceptual aspects of the emerging non-fullerene OPV systems that have provided fundamental insights into material design and D/A compatibility and further outlines the key challenges involved in NFA development and some perspectives along with useful material design guidelines. Looking forward, we will discuss some research directions in terms of NFA materials for further improving device collaboration performance.","PeriodicalId":343,"journal":{"name":"Joule","volume":"55 1","pages":""},"PeriodicalIF":35.4000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material insights and challenges for organic photovoltaics based on non-fullerene acceptors\",\"authors\":\"Xiaohei Wu, Xinrong Yang, Bowen Chang, Rui Sun, Jie Min\",\"doi\":\"10.1016/j.joule.2025.102169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic photovoltaics (OPVs) have witnessed significant advancements in device efficiency and operational stability, with single-junction cells exceeding 20% efficiency and over 10,000 h of lifetime. These improvements have been primarily driven by the rapid development of novel non-fullerene acceptors (NFAs) and their corresponding donor materials. Although relevant active layer materials are highly efficient and stable, their development largely relied on empirical trial-and-error approaches and the obsessive pursuit of performance metrics, with a limited understanding of the intricate structure-property relationships governing device performance, the suitable donor/acceptor (D/A) combinations, and component modulation. To bridge the gap between performance improvement and device practicality, this review examines and describes several important conceptual aspects of the emerging non-fullerene OPV systems that have provided fundamental insights into material design and D/A compatibility and further outlines the key challenges involved in NFA development and some perspectives along with useful material design guidelines. Looking forward, we will discuss some research directions in terms of NFA materials for further improving device collaboration performance.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":35.4000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.102169\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.102169","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Material insights and challenges for organic photovoltaics based on non-fullerene acceptors
Organic photovoltaics (OPVs) have witnessed significant advancements in device efficiency and operational stability, with single-junction cells exceeding 20% efficiency and over 10,000 h of lifetime. These improvements have been primarily driven by the rapid development of novel non-fullerene acceptors (NFAs) and their corresponding donor materials. Although relevant active layer materials are highly efficient and stable, their development largely relied on empirical trial-and-error approaches and the obsessive pursuit of performance metrics, with a limited understanding of the intricate structure-property relationships governing device performance, the suitable donor/acceptor (D/A) combinations, and component modulation. To bridge the gap between performance improvement and device practicality, this review examines and describes several important conceptual aspects of the emerging non-fullerene OPV systems that have provided fundamental insights into material design and D/A compatibility and further outlines the key challenges involved in NFA development and some perspectives along with useful material design guidelines. Looking forward, we will discuss some research directions in terms of NFA materials for further improving device collaboration performance.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.