研究地形跟踪坐标在人工智能驱动的降水预报中的应用

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Yingkai Sha, John S. Schreck, William Chapman, David John Gagne II
{"title":"研究地形跟踪坐标在人工智能驱动的降水预报中的应用","authors":"Yingkai Sha,&nbsp;John S. Schreck,&nbsp;William Chapman,&nbsp;David John Gagne II","doi":"10.1029/2025GL118478","DOIUrl":null,"url":null,"abstract":"<p>Artificial Intelligence (AI) weather prediction (AIWP) models often produce “blurry” precipitation forecasts. This study presents a novel solution to tackle this problem—integrating terrain-following coordinates into AIWP models. Forecast experiments are conducted to evaluate the effectiveness of terrain-following coordinates using FuXi, an example AIWP model, adapted to 1.0<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math> grid spacing data. Verification results show a largely improved estimation of extreme events and precipitation intensity spectra. Terrain-following coordinates are also found to collaborate well with global mass and energy conservation constraints, with a clear reduction of drizzle bias. Case studies reveal that terrain-following coordinates can represent near-surface winds better, which helps AIWP models in learning the relationships between precipitation and other prognostic variables. The result of this study suggests that terrain-following coordinates are worth considering for AIWP models in producing more accurate precipitation forecasts.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 20","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL118478","citationCount":"0","resultStr":"{\"title\":\"Investigating the Use of Terrain-Following Coordinates in AI-Driven Precipitation Forecasts\",\"authors\":\"Yingkai Sha,&nbsp;John S. Schreck,&nbsp;William Chapman,&nbsp;David John Gagne II\",\"doi\":\"10.1029/2025GL118478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Artificial Intelligence (AI) weather prediction (AIWP) models often produce “blurry” precipitation forecasts. This study presents a novel solution to tackle this problem—integrating terrain-following coordinates into AIWP models. Forecast experiments are conducted to evaluate the effectiveness of terrain-following coordinates using FuXi, an example AIWP model, adapted to 1.0<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math> grid spacing data. Verification results show a largely improved estimation of extreme events and precipitation intensity spectra. Terrain-following coordinates are also found to collaborate well with global mass and energy conservation constraints, with a clear reduction of drizzle bias. Case studies reveal that terrain-following coordinates can represent near-surface winds better, which helps AIWP models in learning the relationships between precipitation and other prognostic variables. The result of this study suggests that terrain-following coordinates are worth considering for AIWP models in producing more accurate precipitation forecasts.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 20\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL118478\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL118478\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL118478","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)天气预报(AIWP)模型经常产生“模糊”的降水预报。本研究提出了一种解决这一问题的新方法——将地形跟踪坐标集成到AIWP模型中。采用基于1.0°${}^{\circ}$格距数据的AIWP模型FuXi进行了地形跟踪坐标预测实验。验证结果表明,该方法对极端事件和降水强度谱的估计有很大改进。地形跟踪坐标也被发现与全球质量和能量守恒约束很好地协作,明显减少了毛毛雨偏差。实例研究表明,地形跟踪坐标可以更好地表示近地面风,这有助于AIWP模式学习降水与其他预测变量之间的关系。本研究的结果表明,地形跟随坐标值得AIWP模式考虑,以产生更准确的降水预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the Use of Terrain-Following Coordinates in AI-Driven Precipitation Forecasts

Investigating the Use of Terrain-Following Coordinates in AI-Driven Precipitation Forecasts

Artificial Intelligence (AI) weather prediction (AIWP) models often produce “blurry” precipitation forecasts. This study presents a novel solution to tackle this problem—integrating terrain-following coordinates into AIWP models. Forecast experiments are conducted to evaluate the effectiveness of terrain-following coordinates using FuXi, an example AIWP model, adapted to 1.0 ° ${}^{\circ}$ grid spacing data. Verification results show a largely improved estimation of extreme events and precipitation intensity spectra. Terrain-following coordinates are also found to collaborate well with global mass and energy conservation constraints, with a clear reduction of drizzle bias. Case studies reveal that terrain-following coordinates can represent near-surface winds better, which helps AIWP models in learning the relationships between precipitation and other prognostic variables. The result of this study suggests that terrain-following coordinates are worth considering for AIWP models in producing more accurate precipitation forecasts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信