二维全补偿铁磁体的超快自旋动力学:时间相关从头算研究

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Shuo Li, Ran Wang, Thomas Frauenheim, Sandong Guo, Zhaobo Zhou, Junjie He
{"title":"二维全补偿铁磁体的超快自旋动力学:时间相关从头算研究","authors":"Shuo Li, Ran Wang, Thomas Frauenheim, Sandong Guo, Zhaobo Zhou, Junjie He","doi":"10.1021/acs.jpclett.5c02874","DOIUrl":null,"url":null,"abstract":"Fully compensated ferrimagnets (CFiMs) represent a novel class of magnetic materials that combine zero net magnetization with strong spin polarization, offering considerable potential for spintronic applications. Here, we employ real-time time-dependent density functional theory (rt-TDDFT) to investigate ultrafast laser-induced spin dynamics in a two-dimensional (2D) Janus NiICl bilayer. The broken inversion symmetry gives rise to an asymmetric interlayer demagnetization process, leading to a transient net magnetization in this system within 50 fs. This phenomenon is attributed to the asymmetric charge accumulation and interlayered optically induced spin transfer (OISTR) between the two Ni magnetic sublattices, facilitated by the intrinsic structural and electronic asymmetry of the Janus configurations. The asymmetric interlayer interaction effectively leads to a transient ferrimagnetic state. Our work reveals the microscopic mechanism of the ultrafast spin dynamics of 2D CFiMs induced by lasers in ultrafast spintronics.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"19 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Spin Dynamics in 2D Fully Compensated Ferrimagnets: A Time-Dependent Ab Initio Study\",\"authors\":\"Shuo Li, Ran Wang, Thomas Frauenheim, Sandong Guo, Zhaobo Zhou, Junjie He\",\"doi\":\"10.1021/acs.jpclett.5c02874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully compensated ferrimagnets (CFiMs) represent a novel class of magnetic materials that combine zero net magnetization with strong spin polarization, offering considerable potential for spintronic applications. Here, we employ real-time time-dependent density functional theory (rt-TDDFT) to investigate ultrafast laser-induced spin dynamics in a two-dimensional (2D) Janus NiICl bilayer. The broken inversion symmetry gives rise to an asymmetric interlayer demagnetization process, leading to a transient net magnetization in this system within 50 fs. This phenomenon is attributed to the asymmetric charge accumulation and interlayered optically induced spin transfer (OISTR) between the two Ni magnetic sublattices, facilitated by the intrinsic structural and electronic asymmetry of the Janus configurations. The asymmetric interlayer interaction effectively leads to a transient ferrimagnetic state. Our work reveals the microscopic mechanism of the ultrafast spin dynamics of 2D CFiMs induced by lasers in ultrafast spintronics.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.5c02874\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c02874","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

全补偿铁磁体(CFiMs)是一种新型的磁性材料,它结合了零净磁化和强自旋极化,为自旋电子应用提供了相当大的潜力。在这里,我们采用实时时相关密度泛函理论(rt-TDDFT)来研究二维Janus NiICl双分子层中激光诱导的超快自旋动力学。逆对称性的破坏导致了不对称的层间退磁过程,导致该系统在50fs内产生瞬态净磁化。这种现象归因于两个Ni磁亚晶格之间的不对称电荷积累和层间光诱导自旋转移(OISTR),这是由Janus构型的固有结构和电子不对称性促成的。不对称层间相互作用有效地导致了瞬态铁磁态。我们的工作揭示了超快自旋电子学中激光诱导二维CFiMs超快自旋动力学的微观机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrafast Spin Dynamics in 2D Fully Compensated Ferrimagnets: A Time-Dependent Ab Initio Study

Ultrafast Spin Dynamics in 2D Fully Compensated Ferrimagnets: A Time-Dependent Ab Initio Study
Fully compensated ferrimagnets (CFiMs) represent a novel class of magnetic materials that combine zero net magnetization with strong spin polarization, offering considerable potential for spintronic applications. Here, we employ real-time time-dependent density functional theory (rt-TDDFT) to investigate ultrafast laser-induced spin dynamics in a two-dimensional (2D) Janus NiICl bilayer. The broken inversion symmetry gives rise to an asymmetric interlayer demagnetization process, leading to a transient net magnetization in this system within 50 fs. This phenomenon is attributed to the asymmetric charge accumulation and interlayered optically induced spin transfer (OISTR) between the two Ni magnetic sublattices, facilitated by the intrinsic structural and electronic asymmetry of the Janus configurations. The asymmetric interlayer interaction effectively leads to a transient ferrimagnetic state. Our work reveals the microscopic mechanism of the ultrafast spin dynamics of 2D CFiMs induced by lasers in ultrafast spintronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信