利用硅纳米线阐明细胞内光电调制的潜在机制。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-16 DOI:10.1021/acsnano.5c11146
Tania Assaf,Layan Habib,Adi Sasson,Shiri Karni-Ashkenazi,Menahem Y Rotenberg
{"title":"利用硅纳米线阐明细胞内光电调制的潜在机制。","authors":"Tania Assaf,Layan Habib,Adi Sasson,Shiri Karni-Ashkenazi,Menahem Y Rotenberg","doi":"10.1021/acsnano.5c11146","DOIUrl":null,"url":null,"abstract":"Strategies to electrically stimulate cells with subcellular resolution while minimizing invasiveness have the potential to revolutionize bioelectronic research. Optoelectronics, and particularly silicon nanowires (SiNWs), offer such capabilities due to their biocompatibility, spontaneous internalization, and photoelectrochemical properties. However, the underlying mechanisms by which SiNWs can optically induce intracellular calcium transients remain unclear. In this study, we mechanistically investigated these mechanisms. First, by depleting intracellular calcium stores, we demonstrated that intracellular, rather than extracellular, calcium is the source of optically induced calcium transients. Thereafter, to decouple the photothermal and photoelectrochemical contributions, we used intrinsic, photoanodic (n-i-p), or photocathodic (p-i-n) SiNWs. Our data shows that both photoanodic and photocathodic interfaces generated more significant calcium responses than the pure photothermal effect. For the photoelectrochemical response, reactive oxygen species (ROS) were found to dominate the photoanodic response, offering a potential strategy to tune oxidative stress responses. On the other hand, the photocathodic response modulated intracellular calcium via voltage-gated and calcium-sensitive channels of intracellular organelles, as evidenced by pharmacological inhibition of key organelles and signaling pathways. This work provides mechanistic insight into SiNW-mediated intracellular modulation, offering fundamental knowledge for the development of SiNW-based, leadless optoelectronic systems that enable precise and cell-specific interrogation within 3D biological constructs. These findings enable the application of safe, efficient, and spatially precise intracellular bioelectric modulation with enhanced subcellular resolution.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"59 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Illuminating the Underlying Mechanism of Intracellular Optoelectronic Modulation Using Silicon Nanowires.\",\"authors\":\"Tania Assaf,Layan Habib,Adi Sasson,Shiri Karni-Ashkenazi,Menahem Y Rotenberg\",\"doi\":\"10.1021/acsnano.5c11146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strategies to electrically stimulate cells with subcellular resolution while minimizing invasiveness have the potential to revolutionize bioelectronic research. Optoelectronics, and particularly silicon nanowires (SiNWs), offer such capabilities due to their biocompatibility, spontaneous internalization, and photoelectrochemical properties. However, the underlying mechanisms by which SiNWs can optically induce intracellular calcium transients remain unclear. In this study, we mechanistically investigated these mechanisms. First, by depleting intracellular calcium stores, we demonstrated that intracellular, rather than extracellular, calcium is the source of optically induced calcium transients. Thereafter, to decouple the photothermal and photoelectrochemical contributions, we used intrinsic, photoanodic (n-i-p), or photocathodic (p-i-n) SiNWs. Our data shows that both photoanodic and photocathodic interfaces generated more significant calcium responses than the pure photothermal effect. For the photoelectrochemical response, reactive oxygen species (ROS) were found to dominate the photoanodic response, offering a potential strategy to tune oxidative stress responses. On the other hand, the photocathodic response modulated intracellular calcium via voltage-gated and calcium-sensitive channels of intracellular organelles, as evidenced by pharmacological inhibition of key organelles and signaling pathways. This work provides mechanistic insight into SiNW-mediated intracellular modulation, offering fundamental knowledge for the development of SiNW-based, leadless optoelectronic systems that enable precise and cell-specific interrogation within 3D biological constructs. These findings enable the application of safe, efficient, and spatially precise intracellular bioelectric modulation with enhanced subcellular resolution.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c11146\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c11146","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以亚细胞分辨率电刺激细胞,同时将侵入性降到最低的策略有可能彻底改变生物电子学研究。光电子技术,特别是硅纳米线(SiNWs),由于其生物相容性、自发内化和光电化学特性,提供了这样的能力。然而,SiNWs光诱导细胞内钙瞬变的潜在机制尚不清楚。在这项研究中,我们对这些机制进行了机械研究。首先,通过消耗细胞内钙储存,我们证明了细胞内钙而不是细胞外钙是光诱导钙瞬变的来源。此后,为了解耦光热和光电化学的贡献,我们使用了本征、光阳极(n-i-p)或光阴极(p-i-n) SiNWs。我们的数据表明,光阳极和光阴极界面产生的钙响应比纯光热效应更显著。在光电化学反应中,活性氧(ROS)主导了光阳极反应,为调节氧化应激反应提供了一种潜在的策略。另一方面,光电阴极响应通过胞内细胞器的电压门控和钙敏感通道调节细胞内钙,这可以通过对关键细胞器和信号通路的药理抑制来证明。这项工作为sinw介导的细胞内调制提供了机制见解,为开发基于sinw的无引线光电系统提供了基础知识,该系统可以在3D生物结构中实现精确和细胞特异性的询问。这些发现使安全、高效和空间精确的细胞内生物电调制与增强的亚细胞分辨率的应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Illuminating the Underlying Mechanism of Intracellular Optoelectronic Modulation Using Silicon Nanowires.
Strategies to electrically stimulate cells with subcellular resolution while minimizing invasiveness have the potential to revolutionize bioelectronic research. Optoelectronics, and particularly silicon nanowires (SiNWs), offer such capabilities due to their biocompatibility, spontaneous internalization, and photoelectrochemical properties. However, the underlying mechanisms by which SiNWs can optically induce intracellular calcium transients remain unclear. In this study, we mechanistically investigated these mechanisms. First, by depleting intracellular calcium stores, we demonstrated that intracellular, rather than extracellular, calcium is the source of optically induced calcium transients. Thereafter, to decouple the photothermal and photoelectrochemical contributions, we used intrinsic, photoanodic (n-i-p), or photocathodic (p-i-n) SiNWs. Our data shows that both photoanodic and photocathodic interfaces generated more significant calcium responses than the pure photothermal effect. For the photoelectrochemical response, reactive oxygen species (ROS) were found to dominate the photoanodic response, offering a potential strategy to tune oxidative stress responses. On the other hand, the photocathodic response modulated intracellular calcium via voltage-gated and calcium-sensitive channels of intracellular organelles, as evidenced by pharmacological inhibition of key organelles and signaling pathways. This work provides mechanistic insight into SiNW-mediated intracellular modulation, offering fundamental knowledge for the development of SiNW-based, leadless optoelectronic systems that enable precise and cell-specific interrogation within 3D biological constructs. These findings enable the application of safe, efficient, and spatially precise intracellular bioelectric modulation with enhanced subcellular resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信