fe掺杂策略提高了V-Ti-Cr固溶体合金的可逆氢容量和循环稳定性

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Shuling Chen, Wenbin Jiang, Mili Liu, Shaoyang Shen, Lin Jiang, Hui Wang, Liuzhang Ouyang
{"title":"fe掺杂策略提高了V-Ti-Cr固溶体合金的可逆氢容量和循环稳定性","authors":"Shuling Chen, Wenbin Jiang, Mili Liu, Shaoyang Shen, Lin Jiang, Hui Wang, Liuzhang Ouyang","doi":"10.1016/j.jallcom.2025.184362","DOIUrl":null,"url":null,"abstract":"The vanadium-based solid solution alloy that features high volumetric hydrogen density is a competitive solution for hydrogen storage system. However, the strong V-H bonding fundamentally limits its reversible hydrogen storage capacity (C<sub><em>re</em></sub>) and cycling performance. Herein, we design a series of Fe-doped BCC single-phase alloys, V<sub>80</sub>Ti<sub>6.67</sub>Cr<sub>13.3.3-<em>x</em></sub>Fe<sub><em>x</em></sub> (x=0,1,2,3), to systematically investigate the Fe doping effect. DFT calculations reveal that in the alloys and hydrides phases, vanadium atoms donate electrons to iron through charge transfer, reducing both the electron density of states near hydrogen sites and the V-H bond strength. This electronic modulation leads to a measurable increase in V-H bond length from 1.76<!-- --> <!-- -->Å of V<sub>80</sub>Ti<sub>6.67</sub>Cr<sub>13.33</sub> hydride to 1.80<!-- --> <!-- -->Å of V<sub>80</sub>Ti<sub>6.67</sub>Cr<sub>12.33</sub>Fe<sub>1</sub> hydride. PCT measurements demonstrate a non-monotonic trend in reversible capacity with Fe content, peaking at 2.34<!-- --> <!-- -->wt.% for the 1% Fe-doped alloy. Notably, under experimental conditions (273<!-- --> <!-- -->K absorption/343<!-- --> <!-- -->K desorption), V<sub>80</sub>Ti<sub>6.67</sub>Cr<sub>12.33</sub>Fe<sub>1</sub> alloy achieves a C<sub><em>re</em></sub> of 2.58<!-- --> <!-- -->wt.%. Moreover, the V<sub>80</sub>Ti<sub>6.67</sub>Cr<sub>12.33</sub>Fe<sub>1</sub> alloy exhibits exceptional cycling stability with 93.6% capacity retention after 500 cycles at 298<!-- --> <!-- -->K, demonstrating the critical role of Fe in enhancing cycling performance. This achievement opens new insight into bonding structure engineering for developing advanced alloys with enhanced hydrogen storage capability.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"33 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe-Doping Strategy Enhances Reversible Hydrogen Capacity and Cycle Stability of V-Ti-Cr Solid Solution Alloy\",\"authors\":\"Shuling Chen, Wenbin Jiang, Mili Liu, Shaoyang Shen, Lin Jiang, Hui Wang, Liuzhang Ouyang\",\"doi\":\"10.1016/j.jallcom.2025.184362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vanadium-based solid solution alloy that features high volumetric hydrogen density is a competitive solution for hydrogen storage system. However, the strong V-H bonding fundamentally limits its reversible hydrogen storage capacity (C<sub><em>re</em></sub>) and cycling performance. Herein, we design a series of Fe-doped BCC single-phase alloys, V<sub>80</sub>Ti<sub>6.67</sub>Cr<sub>13.3.3-<em>x</em></sub>Fe<sub><em>x</em></sub> (x=0,1,2,3), to systematically investigate the Fe doping effect. DFT calculations reveal that in the alloys and hydrides phases, vanadium atoms donate electrons to iron through charge transfer, reducing both the electron density of states near hydrogen sites and the V-H bond strength. This electronic modulation leads to a measurable increase in V-H bond length from 1.76<!-- --> <!-- -->Å of V<sub>80</sub>Ti<sub>6.67</sub>Cr<sub>13.33</sub> hydride to 1.80<!-- --> <!-- -->Å of V<sub>80</sub>Ti<sub>6.67</sub>Cr<sub>12.33</sub>Fe<sub>1</sub> hydride. PCT measurements demonstrate a non-monotonic trend in reversible capacity with Fe content, peaking at 2.34<!-- --> <!-- -->wt.% for the 1% Fe-doped alloy. Notably, under experimental conditions (273<!-- --> <!-- -->K absorption/343<!-- --> <!-- -->K desorption), V<sub>80</sub>Ti<sub>6.67</sub>Cr<sub>12.33</sub>Fe<sub>1</sub> alloy achieves a C<sub><em>re</em></sub> of 2.58<!-- --> <!-- -->wt.%. Moreover, the V<sub>80</sub>Ti<sub>6.67</sub>Cr<sub>12.33</sub>Fe<sub>1</sub> alloy exhibits exceptional cycling stability with 93.6% capacity retention after 500 cycles at 298<!-- --> <!-- -->K, demonstrating the critical role of Fe in enhancing cycling performance. This achievement opens new insight into bonding structure engineering for developing advanced alloys with enhanced hydrogen storage capability.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.184362\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.184362","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钒基固溶体合金具有体积氢密度高的特点,是一种具有竞争力的储氢系统解决方案。然而,强大的V-H键从根本上限制了其可逆储氢能力(Cre)和循环性能。为此,我们设计了一系列Fe掺杂BCC单相合金V80Ti6.67Cr13.3.3-xFex (x=0,1,2,3),以系统地研究Fe掺杂效应。DFT计算表明,在合金相和氢化物相中,钒原子通过电荷转移将电子提供给铁,降低了氢位附近态的电子密度和V-H键强度。电子调制导致V-H键长度从V80Ti6.67Cr13.33氢化物的1.76 Å增加到V80Ti6.67Cr12.33Fe1氢化物的1.80 Å。PCT测量表明,可逆容量随铁含量呈非单调趋势,在掺铁1%的合金中达到峰值2.34 wt.%。值得注意的是,在273 K吸收/343 K解吸条件下,V80Ti6.67Cr12.33Fe1合金的Cre为2.58 wt.%。此外,V80Ti6.67Cr12.33Fe1合金表现出优异的循环稳定性,在298 K下循环500次后,其容量保持率为93.6%,证明了Fe在提高循环性能中的关键作用。这一成就为开发具有增强储氢能力的先进合金的键合结构工程提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fe-Doping Strategy Enhances Reversible Hydrogen Capacity and Cycle Stability of V-Ti-Cr Solid Solution Alloy
The vanadium-based solid solution alloy that features high volumetric hydrogen density is a competitive solution for hydrogen storage system. However, the strong V-H bonding fundamentally limits its reversible hydrogen storage capacity (Cre) and cycling performance. Herein, we design a series of Fe-doped BCC single-phase alloys, V80Ti6.67Cr13.3.3-xFex (x=0,1,2,3), to systematically investigate the Fe doping effect. DFT calculations reveal that in the alloys and hydrides phases, vanadium atoms donate electrons to iron through charge transfer, reducing both the electron density of states near hydrogen sites and the V-H bond strength. This electronic modulation leads to a measurable increase in V-H bond length from 1.76 Å of V80Ti6.67Cr13.33 hydride to 1.80 Å of V80Ti6.67Cr12.33Fe1 hydride. PCT measurements demonstrate a non-monotonic trend in reversible capacity with Fe content, peaking at 2.34 wt.% for the 1% Fe-doped alloy. Notably, under experimental conditions (273 K absorption/343 K desorption), V80Ti6.67Cr12.33Fe1 alloy achieves a Cre of 2.58 wt.%. Moreover, the V80Ti6.67Cr12.33Fe1 alloy exhibits exceptional cycling stability with 93.6% capacity retention after 500 cycles at 298 K, demonstrating the critical role of Fe in enhancing cycling performance. This achievement opens new insight into bonding structure engineering for developing advanced alloys with enhanced hydrogen storage capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信