Sumit Kumar Pramanik,Sreejesh Sreedharan,Noufal Kandoth,Jorge Bernardino de la Serna,Amitava Das,Jim A Thomas
{"title":"过渡金属配合物作为超分辨显微镜的光学探针。","authors":"Sumit Kumar Pramanik,Sreejesh Sreedharan,Noufal Kandoth,Jorge Bernardino de la Serna,Amitava Das,Jim A Thomas","doi":"10.1038/s41570-025-00764-w","DOIUrl":null,"url":null,"abstract":"The suite of techniques encompassing optical super-resolution microscopy can facilitate detailed visualization of biological structures and biochemical transformations at unprecedented levels of resolution and contrast; however, they depend on imaging probes with specific biophysical and photophysical properties. In this context, metal complexes with tuneable photo-excited states and stability towards photobleaching are promising candidates for advanced imaging techniques. This Review illustrates how, by selecting appropriate optical properties and luminescence responses, metal complexes can be utilized as probes for a range of super-resolution microscopy techniques, including multimodal imaging, to study subcellular architecture and dynamics with nanoscale resolution. Limitations and challenges of the existing molecular probes are also discussed. By highlighting these recent innovations and providing suggestions for future directions, this Review further underscores the importance of optical probes in pushing the boundaries of super-resolution microscopy and advancing our understanding of complex biological systems.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"19 1","pages":""},"PeriodicalIF":51.7000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition metal complexes as optical probes for super-resolution microscopy.\",\"authors\":\"Sumit Kumar Pramanik,Sreejesh Sreedharan,Noufal Kandoth,Jorge Bernardino de la Serna,Amitava Das,Jim A Thomas\",\"doi\":\"10.1038/s41570-025-00764-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The suite of techniques encompassing optical super-resolution microscopy can facilitate detailed visualization of biological structures and biochemical transformations at unprecedented levels of resolution and contrast; however, they depend on imaging probes with specific biophysical and photophysical properties. In this context, metal complexes with tuneable photo-excited states and stability towards photobleaching are promising candidates for advanced imaging techniques. This Review illustrates how, by selecting appropriate optical properties and luminescence responses, metal complexes can be utilized as probes for a range of super-resolution microscopy techniques, including multimodal imaging, to study subcellular architecture and dynamics with nanoscale resolution. Limitations and challenges of the existing molecular probes are also discussed. By highlighting these recent innovations and providing suggestions for future directions, this Review further underscores the importance of optical probes in pushing the boundaries of super-resolution microscopy and advancing our understanding of complex biological systems.\",\"PeriodicalId\":18849,\"journal\":{\"name\":\"Nature reviews. Chemistry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":51.7000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature reviews. Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41570-025-00764-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41570-025-00764-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Transition metal complexes as optical probes for super-resolution microscopy.
The suite of techniques encompassing optical super-resolution microscopy can facilitate detailed visualization of biological structures and biochemical transformations at unprecedented levels of resolution and contrast; however, they depend on imaging probes with specific biophysical and photophysical properties. In this context, metal complexes with tuneable photo-excited states and stability towards photobleaching are promising candidates for advanced imaging techniques. This Review illustrates how, by selecting appropriate optical properties and luminescence responses, metal complexes can be utilized as probes for a range of super-resolution microscopy techniques, including multimodal imaging, to study subcellular architecture and dynamics with nanoscale resolution. Limitations and challenges of the existing molecular probes are also discussed. By highlighting these recent innovations and providing suggestions for future directions, this Review further underscores the importance of optical probes in pushing the boundaries of super-resolution microscopy and advancing our understanding of complex biological systems.
期刊介绍:
Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.