用于解决前列腺生物力学正反问题的物理信息神经网络(pinn)。

IF 3.5
María Ferrón-Vivó, Enrique Nadal, José Manuel Navarro-Jiménez, Santiago Gregori, María José Rupérez
{"title":"用于解决前列腺生物力学正反问题的物理信息神经网络(pinn)。","authors":"María Ferrón-Vivó, Enrique Nadal, José Manuel Navarro-Jiménez, Santiago Gregori, María José Rupérez","doi":"10.1016/j.jmbbm.2025.107225","DOIUrl":null,"url":null,"abstract":"<p><p>This work introduces a novel integration of Physics-Informed Neural Networks (PINNs) with hyperelastic material modeling, employing the Neo-Hookean model to estimate the stiffness of soft tissue organs based on realistic anatomical geometries. Specifically, we propose the modeling of the prostate biomechanics as an initial application of this framework. By combining machine learning with principles of continuum mechanics, the methodology leverages finite element method (FEM) simulations and magnetic resonance imaging (MRI)-derived prostate models to address forward and inverse biomechanical problems. The PINN framework demonstrates the ability to provide accurate material property estimations, requiring limited data while overcoming challenges in data scarcity. This approach marks a significant advancement in patient-specific precision medicine, enabling improved diagnostics, personalized treatment planning, and broader applications in the biomechanical characterization of other soft tissues and organ systems.</p>","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"173 ","pages":"107225"},"PeriodicalIF":3.5000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-Informed Neural Networks (PINNs) for solving the forward and inverse problems of prostate biomechanics.\",\"authors\":\"María Ferrón-Vivó, Enrique Nadal, José Manuel Navarro-Jiménez, Santiago Gregori, María José Rupérez\",\"doi\":\"10.1016/j.jmbbm.2025.107225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work introduces a novel integration of Physics-Informed Neural Networks (PINNs) with hyperelastic material modeling, employing the Neo-Hookean model to estimate the stiffness of soft tissue organs based on realistic anatomical geometries. Specifically, we propose the modeling of the prostate biomechanics as an initial application of this framework. By combining machine learning with principles of continuum mechanics, the methodology leverages finite element method (FEM) simulations and magnetic resonance imaging (MRI)-derived prostate models to address forward and inverse biomechanical problems. The PINN framework demonstrates the ability to provide accurate material property estimations, requiring limited data while overcoming challenges in data scarcity. This approach marks a significant advancement in patient-specific precision medicine, enabling improved diagnostics, personalized treatment planning, and broader applications in the biomechanical characterization of other soft tissues and organ systems.</p>\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"173 \",\"pages\":\"107225\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmbbm.2025.107225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmbbm.2025.107225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作引入了一种新的物理信息神经网络(pinn)与超弹性材料建模的集成,采用Neo-Hookean模型来估计基于真实解剖几何的软组织器官的刚度。具体来说,我们建议将前列腺生物力学建模作为该框架的初步应用。通过将机器学习与连续介质力学原理相结合,该方法利用有限元法(FEM)模拟和磁共振成像(MRI)衍生的前列腺模型来解决正向和反向生物力学问题。PINN框架展示了提供准确的材料属性估计的能力,需要有限的数据,同时克服了数据稀缺的挑战。这种方法标志着患者特异性精准医学的重大进步,使改进的诊断、个性化的治疗计划和更广泛的应用于其他软组织和器官系统的生物力学表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-Informed Neural Networks (PINNs) for solving the forward and inverse problems of prostate biomechanics.

This work introduces a novel integration of Physics-Informed Neural Networks (PINNs) with hyperelastic material modeling, employing the Neo-Hookean model to estimate the stiffness of soft tissue organs based on realistic anatomical geometries. Specifically, we propose the modeling of the prostate biomechanics as an initial application of this framework. By combining machine learning with principles of continuum mechanics, the methodology leverages finite element method (FEM) simulations and magnetic resonance imaging (MRI)-derived prostate models to address forward and inverse biomechanical problems. The PINN framework demonstrates the ability to provide accurate material property estimations, requiring limited data while overcoming challenges in data scarcity. This approach marks a significant advancement in patient-specific precision medicine, enabling improved diagnostics, personalized treatment planning, and broader applications in the biomechanical characterization of other soft tissues and organ systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信