mxene -聚合物纳米复合材料高效光催化降解抗生素综述:微观结构控制、环境适应性及未来展望

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-28 DOI:10.3390/polym17192630
Zhenfei Chen, Zhifei Meng, Zhongguo Zhang, Weifang Ma
{"title":"mxene -聚合物纳米复合材料高效光催化降解抗生素综述:微观结构控制、环境适应性及未来展望","authors":"Zhenfei Chen, Zhifei Meng, Zhongguo Zhang, Weifang Ma","doi":"10.3390/polym17192630","DOIUrl":null,"url":null,"abstract":"<p><p>The efficient degradation of antibiotics in pharmaceutical wastewater remains a critical challenge against environmental contaminants. Conventional photocatalysts face potential limitations such as narrow visible-light absorption, rapid carrier recombination, and reliance on precious metal cocatalysts. This review investigates the coordination structure of MXene as a cocatalyst to synergistically enhance photocatalytic antibiotic degradation efficiency and the coordination structure modification mechanisms. MXene's tunable bandgap (0.92-1.75 eV), exceptional conductivity (100-20,000 S/cm), and abundant surface terminations (-O, -OH, -F) enable the construction of Schottky or Z-scheme heterojunctions with semiconductors (Cu<sub>2</sub>O, TiO<sub>2</sub>, g-C<sub>3</sub>N<sub>4</sub>), achieving 50-70% efficiency improvement compared to pristine semiconductors. The \"electron sponge\" effect of MXene suppresses electron-hole recombination by 3-5 times, while its surface functional groups dynamically optimize pollutant adsorption. Notably, MXene's localized surface plasmon resonance extends light harvesting from visible (400-800 nm) to near-infrared regions (800-2000 nm), tripling photon utilization efficiency. Theoretical simulations demonstrate that d-orbital electronic configurations and terminal groups cooperatively regulate catalytic active sites at atomic scales. The MXene composites demonstrate remarkable environmental stability, maintaining over 90% degradation efficiency of antibiotic under high salinity (2 M NaCl) and broad pH range (4-10). Future research should prioritize green synthesis protocols and mechanistic investigations of interfacial dynamics in multicomponent wastewater systems to facilitate engineering applications. This work provides fundamental insights into designing MXene-based photocatalysts for sustainable water purification.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12527101/pdf/","citationCount":"0","resultStr":"{\"title\":\"MXene-Polymer Nanocomposites for High-Efficiency Photocatalytic Antibiotic Degradation Review: Microstructure Control, Environmental Adaptability and Future Prospects.\",\"authors\":\"Zhenfei Chen, Zhifei Meng, Zhongguo Zhang, Weifang Ma\",\"doi\":\"10.3390/polym17192630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The efficient degradation of antibiotics in pharmaceutical wastewater remains a critical challenge against environmental contaminants. Conventional photocatalysts face potential limitations such as narrow visible-light absorption, rapid carrier recombination, and reliance on precious metal cocatalysts. This review investigates the coordination structure of MXene as a cocatalyst to synergistically enhance photocatalytic antibiotic degradation efficiency and the coordination structure modification mechanisms. MXene's tunable bandgap (0.92-1.75 eV), exceptional conductivity (100-20,000 S/cm), and abundant surface terminations (-O, -OH, -F) enable the construction of Schottky or Z-scheme heterojunctions with semiconductors (Cu<sub>2</sub>O, TiO<sub>2</sub>, g-C<sub>3</sub>N<sub>4</sub>), achieving 50-70% efficiency improvement compared to pristine semiconductors. The \\\"electron sponge\\\" effect of MXene suppresses electron-hole recombination by 3-5 times, while its surface functional groups dynamically optimize pollutant adsorption. Notably, MXene's localized surface plasmon resonance extends light harvesting from visible (400-800 nm) to near-infrared regions (800-2000 nm), tripling photon utilization efficiency. Theoretical simulations demonstrate that d-orbital electronic configurations and terminal groups cooperatively regulate catalytic active sites at atomic scales. The MXene composites demonstrate remarkable environmental stability, maintaining over 90% degradation efficiency of antibiotic under high salinity (2 M NaCl) and broad pH range (4-10). Future research should prioritize green synthesis protocols and mechanistic investigations of interfacial dynamics in multicomponent wastewater systems to facilitate engineering applications. This work provides fundamental insights into designing MXene-based photocatalysts for sustainable water purification.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12527101/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17192630\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17192630","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

制药废水中抗生素的有效降解仍然是对抗环境污染物的关键挑战。传统的光催化剂面临着潜在的局限性,如窄的可见光吸收,快速的载流子重组,以及对贵金属助催化剂的依赖。本文综述了MXene作为助催化剂协同提高光催化抗生素降解效率的配位结构及其配位结构修饰机理。MXene的可调带隙(0.92-1.75 eV),卓越的导电性(100-20,000 S/cm)和丰富的表面末端(-O, -OH, -F)使其能够与半导体(Cu2O, TiO2, g-C3N4)构建Schottky或Z-scheme异质结,与原始半导体相比,效率提高了50-70%。MXene的“电子海绵”效应抑制了3-5倍的电子空穴复合,其表面官能团动态优化污染物吸附。值得注意的是,MXene的局部表面等离子体共振将光收集从可见光(400-800 nm)扩展到近红外区域(800-2000 nm),使光子利用效率提高了三倍。理论模拟表明,d轨道电子构型和末端基团在原子尺度上协同调节催化活性位点。MXene复合材料表现出良好的环境稳定性,在高盐度(2 M NaCl)和宽pH范围(4-10)下,对抗生素的降解效率保持在90%以上。未来的研究应优先考虑绿色合成方案和多组分废水系统界面动力学的机理研究,以促进工程应用。这项工作为设计基于mxeni的可持续水净化光催化剂提供了基础见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MXene-Polymer Nanocomposites for High-Efficiency Photocatalytic Antibiotic Degradation Review: Microstructure Control, Environmental Adaptability and Future Prospects.

The efficient degradation of antibiotics in pharmaceutical wastewater remains a critical challenge against environmental contaminants. Conventional photocatalysts face potential limitations such as narrow visible-light absorption, rapid carrier recombination, and reliance on precious metal cocatalysts. This review investigates the coordination structure of MXene as a cocatalyst to synergistically enhance photocatalytic antibiotic degradation efficiency and the coordination structure modification mechanisms. MXene's tunable bandgap (0.92-1.75 eV), exceptional conductivity (100-20,000 S/cm), and abundant surface terminations (-O, -OH, -F) enable the construction of Schottky or Z-scheme heterojunctions with semiconductors (Cu2O, TiO2, g-C3N4), achieving 50-70% efficiency improvement compared to pristine semiconductors. The "electron sponge" effect of MXene suppresses electron-hole recombination by 3-5 times, while its surface functional groups dynamically optimize pollutant adsorption. Notably, MXene's localized surface plasmon resonance extends light harvesting from visible (400-800 nm) to near-infrared regions (800-2000 nm), tripling photon utilization efficiency. Theoretical simulations demonstrate that d-orbital electronic configurations and terminal groups cooperatively regulate catalytic active sites at atomic scales. The MXene composites demonstrate remarkable environmental stability, maintaining over 90% degradation efficiency of antibiotic under high salinity (2 M NaCl) and broad pH range (4-10). Future research should prioritize green synthesis protocols and mechanistic investigations of interfacial dynamics in multicomponent wastewater systems to facilitate engineering applications. This work provides fundamental insights into designing MXene-based photocatalysts for sustainable water purification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信