{"title":"TEMPO/NaBr/NaClO在大麻纤维氧化中的作用:机理和反应动力学的解读。","authors":"Lingping Kong, Peiyu Du, Lizhou Pei, Dan Sun","doi":"10.3390/polym17192629","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the oxidation of industrial hemp staple fibers by the TEMPO/NaBr/NaClO system was explored by the real-time monitoring of the changes in reaction rate, selective oxidative conversion, and reaction time under different operating conditions such as TEMPO usage, NaBr usage, NaClO usage, reaction time, and reaction temperature. We propose a variable-speed competition mechanism between NaClO and TEMPO, which provides experimental support for the long-standing hypothesis that hypochlorite delays acid formation through modulation of the HOCl/OCl<sup>-</sup> and HOBr/OBr<sup>-</sup> equilibrium dynamics. The innovative use of combined analysis for several consecutive first-order reactions to investigate the rate-limiting reactions of TEMPO, TEMPO<sup>+</sup>, and TEMPOH over a range of concentrations revealed that the reaction that generates TEMPOH is the key rate-limiting reaction. We characterize the apparent oxidation kinetics of industrial hemp staple fiber in the TEMPO/NaBr/NaClO system using a pseudo-first-order kinetic model, revealing distinct apparent reaction rates across both primary and secondary bast fiber regions. This paper explained the difference in reaction rate between the two aspects of microfibril spatial structure and cellulose crystal structure. The single-factor analysis indicates that reaction time and temperature exert the most significant influence on the conversion rate of selective oxidation within this system.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12526754/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Role of TEMPO/NaBr/NaClO in Hemp Fiber Oxidation: Deciphering the Mechanism and Reaction Kinetics.\",\"authors\":\"Lingping Kong, Peiyu Du, Lizhou Pei, Dan Sun\",\"doi\":\"10.3390/polym17192629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the oxidation of industrial hemp staple fibers by the TEMPO/NaBr/NaClO system was explored by the real-time monitoring of the changes in reaction rate, selective oxidative conversion, and reaction time under different operating conditions such as TEMPO usage, NaBr usage, NaClO usage, reaction time, and reaction temperature. We propose a variable-speed competition mechanism between NaClO and TEMPO, which provides experimental support for the long-standing hypothesis that hypochlorite delays acid formation through modulation of the HOCl/OCl<sup>-</sup> and HOBr/OBr<sup>-</sup> equilibrium dynamics. The innovative use of combined analysis for several consecutive first-order reactions to investigate the rate-limiting reactions of TEMPO, TEMPO<sup>+</sup>, and TEMPOH over a range of concentrations revealed that the reaction that generates TEMPOH is the key rate-limiting reaction. We characterize the apparent oxidation kinetics of industrial hemp staple fiber in the TEMPO/NaBr/NaClO system using a pseudo-first-order kinetic model, revealing distinct apparent reaction rates across both primary and secondary bast fiber regions. This paper explained the difference in reaction rate between the two aspects of microfibril spatial structure and cellulose crystal structure. The single-factor analysis indicates that reaction time and temperature exert the most significant influence on the conversion rate of selective oxidation within this system.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12526754/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17192629\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17192629","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
The Role of TEMPO/NaBr/NaClO in Hemp Fiber Oxidation: Deciphering the Mechanism and Reaction Kinetics.
In this study, the oxidation of industrial hemp staple fibers by the TEMPO/NaBr/NaClO system was explored by the real-time monitoring of the changes in reaction rate, selective oxidative conversion, and reaction time under different operating conditions such as TEMPO usage, NaBr usage, NaClO usage, reaction time, and reaction temperature. We propose a variable-speed competition mechanism between NaClO and TEMPO, which provides experimental support for the long-standing hypothesis that hypochlorite delays acid formation through modulation of the HOCl/OCl- and HOBr/OBr- equilibrium dynamics. The innovative use of combined analysis for several consecutive first-order reactions to investigate the rate-limiting reactions of TEMPO, TEMPO+, and TEMPOH over a range of concentrations revealed that the reaction that generates TEMPOH is the key rate-limiting reaction. We characterize the apparent oxidation kinetics of industrial hemp staple fiber in the TEMPO/NaBr/NaClO system using a pseudo-first-order kinetic model, revealing distinct apparent reaction rates across both primary and secondary bast fiber regions. This paper explained the difference in reaction rate between the two aspects of microfibril spatial structure and cellulose crystal structure. The single-factor analysis indicates that reaction time and temperature exert the most significant influence on the conversion rate of selective oxidation within this system.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.